Homework Schedule
Email Single PDF to ajlee@ucsd.edu

Due Oct. 8 (Monday, 12 noon)

— Ch. 1, Problem 11

— Ch. 2, Problem 2

Due Oct. 22 (Monday, 12 noon)

— Ch. 3, Problem 1, 2 (typo in answer key), 3
— Ch. 4, Problem 4, 5

Midterm Oct. 31 (in class)

Due Nov. 5 (Monday, 12 noon)

— Ch. 5, Problem 3, 7 (erratum in 7d)

Due Nov. 14 (Wednesday, 12 noon)

— Ch. 6, Problem 4, 6

Due Nov. 19 (Monday, 12 noon)

— Ch. 7, Problem 3 (not graded, outline approach only, discuss)

Lecture Ch. 2a

* Energy and heat capacity
— State functions or exact differentials
— Internal energy vs. enthalpy
« 1st Law of thermodynamics
— Relate heat, work, energy
» Heat/work cycles (and path integrals)
— Energy vs. heat/work?
— Adiabatic processes
— Reversible “P-V” work > define entropy

Curry and Webster, Ch. 2 pp. 35-47
Van Ness, Ch. 2

What did we learn in Ch. 1?

What P, T, U are for a fluid
What an ideal gas is

How P, T, v relate for an ideal gas (and we
call this relationship an equation of state)

What chemical components constitute the

atmosphere (for homosphere <110 km)
What the hydrostatic balance is
How p, T vary with z for observed,

“standard,” isopycnic, isothermal, constant
lapse-rate atmospheres

Key Combined 15t+2nd | aw Results

1st Law: du=dq+dw; u is exact
* du=dq,,-pdv (expansion only)
Define Enthalpy: H=U+PV

* dh=du+pdv+vdp

2nd Law: [dqrev/T]int.cycIe=0
Define Entropy: dn=dq,./T

* Tdn=dq,,
¢ du=Tdn-pdv

Define Gibbs: G=H-Tn

» dg=dh-Tdn-ndT=(du+pdv+vdp)-Tdn-ndT
* dg=du-(Tdn-pdv)+vdp-ndT=vdp-ndT
(dp/dt)g=n/v

Lord Keluin
(a.k.a William Thomson)

.IEIII'IES PA ..I()lllﬂ

o The First Law of Thermodynamics

Other Kinds of Energy
What is the difference between E and U?

 In addition to changes in internal energy, a
system may change
— Potential energy for height change Az
— Kinetic energy for velocity change Av
— Nuclear energy for mass change Am

dU=dQ +dw 2.7 1
e Consequences AE = AU(p,V,T) +mgAz+ —mAV’ —c’Am=Q+W
Uniqueness of work values W.o. = —[P4v| Reversible 2
Definition of energy Q =0 = AE = W| Adiabatic
Conservation of energy Q-0W=-0—AE=-0-= £ - £ State function
Impossibility of perpetual motion machine 2 =@-AF =0 = W = 0| Gee also 2nd law! if AE = AU(PaV,T)y then AU(PsV,T) = Q +W
(Relativity) AE = me?| Proof for hmwk...

Van Ness, p. 13




Exact Differentials Heat Capacity
« State functions are exact differentials

Itis convenient to define a new function called the enthalpy, H, by

[ H=U+pV
tween them. The first law thus states that although dQ and dWare not exacl differen-
tials, their sum dU = dQ + dW is an exact differential and thus a thermodynamic state

variable « Difference b/w U and H
. From 1%t Law (i.e. U
—U dependsonv du= (3—)4T+ a—]dv

is exact differential

+ (a;) Ll Defined above

(2.12)

An exact differential d£ has the following properties: H
The integral of d about a closed path is equal to zero (fdﬁ 0). - depends onp dh=(ﬁ)
For §(x.y), we: have df = (9¢/0x) dx + (9&/3y) dy where xand y are independent

variables of the system and the subscripts x and y on the partial derivatives indi-
cate which variable is held constant in the differentiation,

1.
2,

Specific heats [a.k. a heat capacityl
—c, is constant v cv-—-=31
-C, is constant g ¢,

(2.158)

o (2.15b)

Heat Capacity Work

du=c,dT+ %) &
r

» Expansion work W=-pdV or w=-pdv

_ 3
dh=c,dT + a;)'dp

— Lifting/rising

— Mixing
For an ideal gas, it has been shown experimentally that (du/dv)y = 0, so that inter-

nal energy is a function only of temperature for an ideal gas, i.e., u = u(T). Itcan also - Convergen ce

be shown that (0h/dp)r =0 and h = h(T). This implies that for ideal gases .
+ Other kinds of work?

du=c,dT @.16)
dh = c,dT

— Electrochemical (e.g. batteries)

How does c, differ from c, quantitatively? Ina tant-pi process, some
of the added heat must be expended in domg work on the surroundings, while in a

constant-volume process, all of the heat is devoted to raising the temperature of the
substance. Therefore it takes more heat per unit temperature rise at constant pressure

than at constant volume, and ¢, > ¢, The difference between ¢, and ¢, can be evalu-
ated from

Cycles

» Work and heat are path-dependent
transfers

— W work i)dwae() %dQ#O
m - Q heat
, l //‘ ,,\\ 2 + State functions are unique “states”
{7 blob .
‘-\ of air 4

3 — U internal energy du=dg+dw
— H enthalpy 0=AUU_‘,(A—)B—>A)=§;JU
(© @
© —n (also S) entropy
Figure 2.1 Rising motion occurs in the atmosphere due to (a) orographic lifting, (b) frontal
lifting, (c) low-level convergence, (d) buoyant rising of warm air, and (e) mechanical mixing.
Expansion work is done by an air parcel when it rises.

— A Helmholtz free energy

— G Gibbs energy




@ (b)

External Pressure, p
w

A v, 0,
Volume, v

Figure 2.2 (a) The amount of work done in the expansion from v, to v, is equal to the area
under the curve. In (b), the system is compressed back to v, via a different process. Even
though the system has returned to its initial state, net work has been done, as indicated by the

shaded area between the two curves.

Reversible-Adiabatic-Work

Reversible W = —pdv
mass is consewm
PV _p_ DY
ldeal Gas ————— B | ow P, T, T,
Adiabatc ——— [ High T Q=0
thick walls

First Law Au=Q0+W

Internal Energy  Au=cdT

Reversible, Adiabatic 7, (P,
L \R

)%,

Reversible-Adiabatic-Work

Reversible W= -pdv
mass is conserved\, P P
PV _p_ P22
Ideal Gas ————— | | ow P, T, T,
Adiabatic —— | High T 0=0
thick walls @

—-pdv =c,dT

First Law Au=Q0+W
Internal Energy  Au=cdT

> { T po -
v
2 2 E

T

dv
-[R==[ec,
P2 it

Reversible, Adiabatic E_
L \R

Reversible Processes

o grain of sand

Reversible
mass is consewm‘ Dol Gccu

W,y =—pdv

« Always at or infinitesimally close to equilibrium

« Infinitesimally small steps

« Infinite number of steps

« Each step can be reversed with infinitesimal force

Lecture Ch. 2b

+ Entropy

+ Second law of thermodynamics
+ Maxwell’s equations

* Heat capacity

* “Meteorologist’s entropy”

Curry and Webster, Ch. 2 pp. 47-62
Van Ness, Ch. 5-7

Entropy

* Is there a way to quantify “useful” energy?

* Need a measure that is conserved, exact,
unique

« While Q is not exact, Q,, is exact
— Reversible heat is limit of maximum work done
— Since path is specified, cyclic integral is 0

There exists an additive function of state known as the equilibrium entropy, which
can never decrease in a thermally isolated system.

Curry and Webster, Ch. 2 pp. 47-62
Van Ness, Ch. 5-7




Consider the first law of thermodynamics in enthalpy form (2.18b) for a reversible
process:

dg= <, dT -vdp

eversible heating is an abstract concept, whereby heating of a system occurs infini-

tesimally slowly through contact with an infinite heat reservoir. For the reversible

expansion of an ideal gas, we may substitute for the specific volume from the equa-
tion of state and divide by temperature

d 4
—;—7 =, - % = cpd(inT)~Rd(in p) (223)

The two terms on the right-hand side of (2.23) are by definition exact differentials,
and their sum must also be an exact differential. Therefore dg/T is an exact differen-

tial ia
% (qu)m= 0 229

where the subscript rev emphasizes that this relationship holds only for a reversible
process. Dividing heat by temperature converts the inexact differential dg into an
exact differential. We can now define a new thermodynamic state function, the en-
tropy, 1, with units J K-1 kg-1, to be

Definition d.
Em oase

rev

Second law of
Thermodynamics

Heat cannot pass of itself from a colder body to a hotter body.

possible

A system left to itself cannot move from a less ordered state to a more
ordered state.

room containing . 0, N,
air possible here here
The entropy of an isolated system cannot decrease.
system =0
AS _ state2. erev

system

Clausius’ Inequality

AN 20

which is known as Clausius’ inequality. For a ible pi we cannot have
A, > 0, since we would have An,, < 0 upon reversing the process, which would
violate Clausius’ inequality. Therefore, A7, =0 forall rev_crsible_ changes. For the

No process exists in which heat is extracted from a source at a single tempera-
ture and converted entirely into useful work, leaving the rest of the world un-
changed.

Consider the basic thermodynamic relations (2.31), (2.32), (2.34), and (2.36):

Tdn - pdv
Tdn +vdp
-ndT - pdv
~ndT + vdp

If we set the left-hand sigés of these equations equal to zero, we obtain

&
L I I [}

()5
2
(3%);-—% (2.38)
At dg=0, ov) __1 (2.39)
we get ndT=vdp (3'7)“ ’
/dT) =n/
or (dp: )g niv \(a_;) %}r}l @.40)

Maxwell’s Equations

Since du, dh, da, and dg are exact differentials, they obey the Euler Fondiliou (2.9).
Therefore from (2.31), (2.32), (2.34) and (2.36) we obtain the following set of useful
relations called Maxwell’s equations:

(@)

" o

(%‘f;): 3;)', (2.50)
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