

What did we learn in Ch. 1? What P, T, U are for a fluid What an ideal gas is How P, T, v relate for an ideal gas (and we call this relationship an equation of state) What chemical components constitute the

- atmosphere (for homosphere <110 km)
- What the hydrostatic balance is
- How p, T vary with z for observed, "standard," isopycnic, isothermal, constant lapse-rate atmospheres

Lecture Ch. 2a

- Energy and heat capacity

 State functions or exact differentials
 Internal energy vs. enthalpy
- 1st Law of thermodynamics
 Relate heat, work, energy
- Heat/work cycles (and path integrals)
 - Energy vs. heat/work?
 Adiabatic processes
 - Reversible "P-V" work \rightarrow define entropy

Curry and Webster, Ch. 2 pp. 35-47 Van Ness, Ch. 2

(Relativity)

Key Combined 1st+2nd Law	Results
• 1 st I aw [.] du=dq+dw [.] u is exact	Fa. 2.8
 du=dq_{rev}-pdv (expansion only) 	p. 56
Define Enthalpy: H=U+PV	Eq. 2.12
 dh=du+pdv+vdp 	
 2nd Law: [dq_{rev}/T]_{int cycle}=0 	Eq. 2.27
 Define Entropy: dη=dq_{rev}/T 	Eq. 2.25a
 Tdη=dq_{rev} 	
• du=Tdη-pdv	
 Define Gibbs: G=H-Tη 	Eq. 2.33
 dg=dh-Tdŋ-ŋdT=(du+pdv+vdp)-Tdŋ-ŋdT 	
 dg=du-(Tdŋ-pdv)+vdp-ŋdT=vdp-ŋdT 	p. 58
 (δp/δt)_q=η/v 	Eq. 2.40

Impossibility of perpetual motion machine $Q = 0, \Delta E = 0 \Rightarrow W = 0$ See also 2nd law!

 $\Delta E = mc^2$ Proof for hmwk.

Exact Differentials

· State functions are exact differentials

tween them. The first law thus states that although dQ and dW are not exact differentials, their sum dU = dQ + dW is an exact differential and thus a thermodynamic state variable.

- An exact differential $d\xi$ has the following properties:
- 1. The integral of $d\xi$ about a closed path is equal to zero ($\oint d\xi = 0$).
- 2. For $\xi(x,y)$, we have $d\xi = (\partial\xi/\partial x) dx + (\partial\xi/\partial y) dy$ where x and y are independent variables of the system and the subscripts x and y on the partial derivatives indicate which variable is held constant in the differentiation.

Work

- Expansion work W=-pdV or w=-pdv
 - Lifting/rising
 - Mixing
 - Convergence
- · Other kinds of work?
- Electrochemical (e.g. batteries)

Maxwell's Equations		
Since <i>du</i> , <i>dh</i> , <i>da</i> , and <i>dg</i> are exact differentials, they obey the Euler condition (2.9). Therefore from (2.31), (2.32), (2.34) and (2.36) we obtain the following set of useful relations called <i>Maxwell's equations</i> :		
$\left(\frac{\partial T}{\partial v}\right)_{\eta} = -\left(\frac{\partial p}{\partial \eta}\right)_{v}$	(2.49)	
$\left(\frac{\partial T}{\partial p} ight)_{\eta} = \left(\frac{\partial v}{\partial \eta} ight)_{p}$	(2.50)	
$\left(\frac{\partial p}{\partial T}\right)_{v} = \left(\frac{\partial \eta}{\partial v}\right)_{T}$	(2.51)	
$\left(\frac{\partial v}{\partial T}\right)_p = -\left(\frac{\partial \eta}{\partial p}\right)_T$	(2.52)	