

lapse-rate atmospheres

Thermodynamic Quantities

- Classical vs. Statistical thermodynamics
- Open/closed systems
- Equation of state f(P,V,T)=0
- Extensive/intensive properties
- Thermal, engine, heat/work cycles

Composition

- Structure
- Comparison to other planets
- + N₂, O₂, Ar, CO₂, H₂O: 110 km constitute 99%
- Water, hydrometeors, aerosol

Constituent	Formula	Molecular weight	% by volume	% by mass
Nitrogen	Na	28.016	78.08	75.51
Oxygen	0	31,999	20.95	23.14
Argon	Ar	39.948	0.93	1.28
Carbon dioxide	CO ₂	44.010	0.03	0.05
Water vapor	H ₂ O	18.005	0-4	

Pressure

- · Force per unit area
- 1 bar = 10⁵ Pa; 1 mb = 1 hPa; 1 atm = 1.013 bar
- Atmosphere vs. Ocean

SA mode omputed s at varie the stan °C/km. A s where 1	I divides the from basic p ous altitudes, dard gives a Above 12km the pressure	atmosphere in physical consta plus some fo pressure of 1. the tabulated has fallen to 0	nto layers w ants and rel rmulas by v 013 bar and temperature .075 bar ar	ith linear te ationships. which those a tempera is essentia d the temp	mperature dis Thus the star values were d ture of 15°C, ally constant. erature to -56	stributions.[2] Idard consists Ierived. For ex and an initial The tabulatior 5.5 °C.[3][4]
			Layers in th	e ISA		
Layer	Level Name	Base Geopotential Height h (in km)	Base Geometric Height z (in km)	Lapse Rate (in °C/km)	Base Temperature T (in °C)	Base Atmospheric Pressure p (in Pa)
0	Troposphere	0.0	0.0	-6.5	+15.0	101,325
1	Tropopause	11.000	11.019	+0.0	-56.5	22,632
2	Stratosphere	20.000	20.063	+1.0	-56.5	5,474.9
3	Stratosphere	32.000	32.162	+2.8	-44.5	868.02
4	Stratopause	47.000	47.350	+0.0	-2.5	110.91
5	Mesosphere	51.000	51.413	-2.8	-2.5	66.939
6	Mesosphere	71.000	71.802	-2.0	-58.5	3.9564
7	Mesopause	84.852	86,000	-	-86.2	0.3734

Geopotential height is a vertical coordinate referenced to Earth's mean sea level — an adjustment to geometric height (elevation above mean sea level) using the variation of gravity with latitude and elevation. Thus it can be considered a "gravity-adjusted height." One usually speaks of the geopotential height of a certain pressure level, which would correspond to the geopotential height necessary to reach the given pressure.

At an elevation of h, the geopotential is defined as

where $g(\phi, z)$ is the acceleration due to gravity, ϕ is latitude, and z is the geometric elevation.

Thus, it is the gravitational potential energy per unit mass at that level. The geopotential height is

$$Z_g = \frac{\Phi}{g_{\rm D}}\,,$$

where g_0 is the standard gravity at mean sea level.

Geophysical scientists often use geopotential height rather than geometric height, because doing so in many cases makes analytical calculations more convenient. For example, the primitive equations which weather forecast models solve are more easily expressed in terms of geopotential than geometric height. Using the former eliminates centrifugal force and air density (which is very difficult to measure) in the equations

The Internation neteorologica	onal Civil Aviation al element at 40°N	Organizintion (ICA from mean sea leve	AO) Standard A l (MSL) to 80ki	tmosphere gives the averag m (262,500 ft).	ge values
The ICAO St	andard Atmosphere	e does not contain v	vater vapour		
Some of the v	alues defined by IO	CAO are:			
		ICAO Stand	ard Atmosphe	re	
	TT 1 1 1 0 0	Temperature °C	Pressure hPa	Lapse Rate °C/1000ft	
	Height km & ft	remperatore e			
	Okm MSL	15.0	1013.25	1.98 (Tropospheric)	
	Okm MSL 11km 36,000ft	15.0 -56.5	1013.25 226.00	1.98 (Tropospheric) 0.00 (Stratospheric)	
	Height km & ft 0km MSL 11km 36,000ft 20km 65,000ft	-56.5 -56.5	1013.25 226.00 54.70	1.98 (Tropospheric) 0.00 (Stratospheric) -1.00 (Stratospheric)	

Kinetic Theory of Gases

- · What is the pressure of a gas?
- What is the temperature of a gas?
- Pressure-volume-temperature relationship(s)
- How does pressure (and volume) relate to energy?
- Kinetic energy
- Internal energy
 - The "fine print"

