Lecture Ch. 5a

- Surface tension (Kelvin effect)
 - Hygroscopic growth (sub saturated humidity)
 - Saturation
- Chemical potential (Raoult effect)
- Nucleation
 - Competition between surface and chemical effects
 - Köhler curves
- Aerosol-cloud interactions

Curry and Webster, Ch. 5 (skip 5.6, 5.7); also 4.5.1
Optional: Pruppacher and Klett, Ch. 6
Homework Problem 3 and 7 (Ch. 5) {7d misprint given in Errata!}

Surface Thermodynamics

- Surfaces require energy (work) to form
- Smaller particles have
 - higher surface-to-volume ratios
 - higher curvature
- Higher curvature requires more energy per mass

\[
dW_\sigma = \sigma \, dA
\]
Extrinsic for fixed mass.

Kelvin Effect

- Work to form surface:
 \[
dW_\sigma = \sigma \, dA \tag{5.1}
\]
- Expansion against pressure difference
 \[
 \sigma \, dA = \Delta p \, dV \tag{5.4}
 \]
 \[
 \Delta p = \frac{2\sigma}{R}
 \tag{5.6}
 \]

<table>
<thead>
<tr>
<th>Surface tension</th>
<th>200</th>
<th>100</th>
<th>10</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\sigma}{\rho})</td>
<td>1.001</td>
<td>1.010</td>
<td>1.114</td>
<td>2.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kelvin Effect</th>
</tr>
</thead>
</table>
| Force Balance: \(F_p = F_\sigma \)
 - Area of spherical cap:
 - \(2\pi R \sin(\theta/2) \)
 - Approximate for small \(\theta \):
 - \(\sin(\theta/2) \approx R/r \)
 - So area of surface force:
 - \(2\pi R \sin(\theta/2) \approx 2\pi R^2 / r \)
 - Result: \(p_\sigma = 2\sigma / r \)
 - Or: \(\Delta p = 2\sigma / r \)

Chemical Effects

- Gibbs for an open system (this allows number of moles to change), from Ch. 4:
 \[
 dG = -\Pi dT + V \, dp + \sum \frac{\partial G}{\partial n_j} \, dn_j
 \tag{4.5}
 \]
 \[
 dG = -\Pi dT + V \, dp + \sum \mu_j \, dn_j
 \tag{4.7}
 \]
Lecture Ch. 5b

- Chemical Potential (from last time)
- Combining Surface and Solute Effects
- Köhler Curves
- Chapter 5, Problem 3 homework
 - Kelvin effect
 - Raoult effect

Chapter 5
p. 158, problem 7b

\[\eta = \frac{3}{4} \frac{\partial\left\{ \right\} }{\partial \eta} \]

Curry and Webster, Ch. 5 (skip 5.6, 5.7); also 4.5.1

Macro-Thermodynamics

- Hot air rises
- Rising air cools
- Cooled moist air saturates
- (Sub & Super)-saturated water vapor condenses
- Condensation liberates heat

Micro-Thermodynamics

- Saturation has the most possible dissolved species
- Equilibrium means two phases are balanced
- Supersaturated states are not stable
- Nucleation initiates a change of “phase” (from particle to droplet)

Bohren, 1987

Nucleation (Pure Water)

- Using Gibbs for open system and surface:
 \[dG = -N\Delta F + Vdp + \sigma_a d\alpha - \mu_a d\alpha_a + \mu_v d\alpha_v \]
 (5.8)
- At constant T and p, and \(d\eta = -d\eta_v \):
 \[dG = \sigma_a \delta x d\alpha + (\mu_v - \mu_v) d\alpha_v \]
 (5.9)
- For phase equilibrium (flat surface):
 \[\mu_v - \mu_v = R T \ln\left(\frac{\sigma}{\eta} \right) \]
 (5.10)
- For spherical droplet:
 \[\eta = \frac{1}{M_v} d\eta_v = \frac{3}{4} \eta_v, 4\pi r^2 d\eta_v \]
 (5.11)

Nucleation (Pure Water) Part 2

- Differential:
 \[dG = \left[-R T \ln \left(\frac{\sigma}{\eta} \frac{\delta x}{x^2} \sigma_a + \sigma_v \right) \right] d\alpha \]
 (5.12)
- Integrated:
 \[\Delta G = 4\pi \sigma_a \delta x - \frac{4\pi^2}{3} \rho R T \ln(S) \]
 (5.13)
- Find minima:
 \[\left. \frac{dG}{dr} \right| _{r_0} = \sigma_a \delta x - 4\pi^2 \rho R T \ln(S) = 0 \]
- Solve for S:
 \[\epsilon_S(r) = \epsilon_S(\eta_0) \exp \left(\frac{2a_0}{\rho R T} \right) = \epsilon_S(\eta_0) \]
 (5.14c)
 \[\eta = \frac{3}{4} \frac{\partial\left\{ \right\} }{\partial \eta} \]
Chemical Potential

- By definition $\mu_v = \mu^0_v + R^* T \ln \frac{\varepsilon}{\varepsilon_0}$
 - With respect to reference state “0”
 - Increase is proportional to concentration
- At saturation $\mu^s_v = \mu^0_v + R^* T \ln \frac{\varepsilon^s}{\varepsilon_0}$
- But saturation=liquid $\mu^s_l = \mu^0_l$
- So we get

$$\mu^s_l - \mu^s_v = R^* T \ln \left(\frac{\varepsilon^s}{\varepsilon_v} \right)$$

Raoult’s Law

- True for “ideal” solutions and $X_i=1$: $p_x = X_i p^*_x$

 $$\frac{p_{\text{total}}}{p^*_x} = X_{\text{H}_2\text{O}} + X_{\text{solute}} \frac{p_{\text{solute}}}{p^*_x}$$

- For dilute solution with $n_{\text{solute}} \ll n_{\text{H}_2\text{O}}$
 - Use expansion of $(1/(1+x)) \approx 1 - x + \text{H.O.T.}$ for small x

$$p_{\text{total}} = X_{\text{H}_2\text{O}} \frac{n_{\text{H}_2\text{O}}}{n_{\text{H}_2\text{O}} + n_{\text{solute}}} = 1 - \frac{n_{\text{solute}}}{n_{\text{H}_2\text{O}}}$$ \hspace{1cm} (4.45)

Van’t Hoff Factor

$$n^c_{\text{solute}} = n_{\text{H}_2\text{O}}$$ \hspace{1cm} (4.47)

$$p_{\text{solute}} = 1 - \frac{n^c_{\text{solute}}}{n_{\text{H}_2\text{O}}}$$ \hspace{1cm} (4.48)

$$e_s \left(\frac{n_{\text{solute}}}{n_{\text{H}_2\text{O}}} \right) = 1 - \frac{3n_{\text{solute}} M_v}{4 \pi n_{\text{solute}} \rho^2} = 1 - \frac{b^3}{r^3}$$ \hspace{1cm} (5.16a)

$$b = 3^3 M_{\text{solute}} \frac{\varepsilon_{\text{solute}}}{4 \pi \varepsilon_{\text{H}_2\text{O}} \rho_0^2}$$

Now, combining surface+solute

- Substitute $e_s(\text{solute})$ for e_s

 $$e_s = e^{0}(1 - \frac{a}{r})^n(\exp(b/r + \ldots))$$

- Expand for $\exp(x)$ for small $x=a/r$

$$e_s \approx (1 - b/r)^n(1 + a/r + \ldots)$$

- Could also go back to $dg_{r,solute}=dg_{solute}+dg_{\text{H}_2\text{O}}$
 - $dg_{\text{H}_2\text{O}}=\text{fcn}(a)$
 - $dg_{\text{solute}}=\text{fcn}(b)$ (i.e. dg for Raoult Effect)

Chemical and Surface Effects

$$e_s \left(\frac{n_{\text{solute}}}{n_{\text{H}_2\text{O}}} \right) = \frac{1 - \frac{a}{r}}{\exp(b/r)}$$ \hspace{1cm} (5.17)

- Both Raoult and Kelvin effects

$$a = 2 \rho_0 \varepsilon_{\text{H}_2\text{O}} \rho R T$$

$$b = 3 \varepsilon_{\text{solute}} \frac{M_{\text{solute}}}{4 \pi \varepsilon_{\text{H}_2\text{O}} \rho_0^2}$$

If r is not too small, (5.17) can be written as

$$e_s \left(\frac{n_{\text{solute}}}{n_{\text{H}_2\text{O}}} \right) = 1 + \frac{a}{r} - \frac{b}{r^3}$$ \hspace{1cm} (5.18)

*What this means is that, for small x, use expansion $\exp(x) = 1 + x + \text{H.O.T.}$, then drop terms with $1/r^4$ and smaller.
Critical Radius and Supersaturation

- Integrate then find maximum

\[\Delta S' = 4\pi r'^2 s_0 \exp \left(\frac{\alpha}{r'^2} \right) \ln \left(\frac{T}{T_s} \right) \]

(5.13)

where, \(S' \) is the supersaturation ratio and \(s_0 \) is the saturated vapor pressure over a plane surface. \(\alpha \) is the surface tension and \(\alpha \) is the equilibrium saturation ratio.

Solving for \(r' \) yields

\[r' = \frac{2s_0}{\alpha \Delta H / T} \]

(5.14a)

We can write explicitly

\[\ln S = \frac{2s_0}{\rho c_p T} \]

(5.14b)