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Raoult’ s Law vs. Henry’ s Law Raoult’ s Law

Vapor-liquid equilibrium *  Vapor-liquid equilibrium « Solutes increase water uptake by particles
For concentrated solvent phase « For dilute aqueous conditions — The more solute (larger particle) the more water (larger droplet)
(almost pure) — Can linearize near origin Salts dissociate
— Can linearize near pure concentration — Ideal solution — Tons interact with water (Raoult’ s law)
- Id.cal solution behavior tof‘ %olu\c Sgu]ally accurate for mole fractions — Dissolution produces energy
For dilute gd:‘—phd:e conditions N . — Polars interact with water (think salt & vinegar)
— Canapply ideal gas law : Use_d for aqueous systems in the Nonpolars repel water (think turtle wax)
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Henry' s Law

< Ifa gas and aqueous phase are in equilibrium, they can be
related by the following equation:

Ag <A

« We can then define a Henry’ s Law coefficient such that

[A(aq) ]= HApA

« Note that Henry’ s Law coefficients have also been defined by
the alternative equation

pA = HA[A(aq)]
so that in using coefficients from references you will need to
confirm the definition used.

(@aq)

Henry’ s Law

the solubility (C,) of the gas, is given by Henry's law™:
Co=kupy

where, p, is the partial pressure (in atmospheres) of the gas, and kn is a
temperature-dependent proportionally constant called the Henry's law
constant or Henry’s law coefficient (units: mole liter™! atm™). Values of ky
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8.1
Summary of Rate Expressions for
Aqueous Oxidation Pathways
Oxidant Rate Expression -ﬂ%ﬂ/ﬂ Reference
o, (6 [50, * 0]+ k[H50; ][50 J[04., ] Hoffmann and
Calvert (1985)
H,0, M Hoffmann and
(1+’<[H ]) Calvert (1985)
- Hoffmann and
Fe(1II) k[Fe(]so] C-:lven(1985)
Mn(11) kfpan(ms(1v)] Martin and Hill
(1987)
NO, k,[qu,:[S(IV)] Lee and Schwartz
(1983)
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Figure 10. Average CCN predicted for four clouds occuring per
day. The data points represent predictions for 1-hour clouds
every 6 hours starting with the first cloud at 000, 100, ete,,
through 500. The line rep the " bl age” values
for a cloud frequency of 4 day,
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Oxidation

S0, + 1720, + K0 ~=> H SO,
sulphur dioxide ‘sulphuric acid
2NO, + 1720, + H,0 —> 2HNO,
nirogen dioxide nitric acid

Sy ! | Add-orming gases and partices have
b il been linked to a variety of impacts,
S1 1 induding forest dedine, accelerated
| leaching of metaefrom rocks and soks,
¥, the decay of imestone, marble, and other
AcidRain building materials, and damage to the
human respiratory system.
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» Note that Henry’ s Law is independent of the amount of
liquid present; however, it does depend on temperature, as
given by the van’ t Hoff equation

dinH, AH,
dT  RT?

« If we integrate with respect to temperature, we get the
following relationship

AH,(1 1
H(T.)- Hy(exo| 22 7~ 7
1 2

http://edugreen.teri.res.in/explore/
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natural-science/_more1999/
more(5/acid-rain-stone-erosion-
of-statue-1-AJHD.jpg

7.1

Hoppel Minimum

¢ Particle evolution in
remote marine
conditions

¢ cloud processing —
growth of particles
due to coalescence
and solute
condensation in ol
cloud 107 107 R A
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Seinfeld and Pandis, Fig. 15.23 (Hoppel et al., 1990)
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Ammonium in Rain

*  Ammonium (NH,") is the other important N-species in rain. It forms
predominantly via the reaction between water and ammonia: H,O + NH;
=NH,"+ OH

* The hydroxyl ion , OH -, formed in this reaction raises the pH of rain. The
residence time for NH; gas is about 6 days. Once it is dissolved in rain
and converted to ammonium, it takes about 5 days to remove the
ammonium.

* A second reaction is one between NH; and H,SO, which leads to the
formation of a (NH,),SO, aerosol. This aerosol can be transported over
long distances (5000 km) before it is removed by rainout or settling.

¢ Ammonia analyses are difficult. Contamination is a problem.

Nitric Acid/Water Equilibrium

* Vapor/liquid equilibrium

» Aqueous reactions

 Effective Henry's Law constant

 Dominant aqueous form (NO;") in all clouds

TaBLE 22

Rario or NH, ro NH, iy ArrosoLs ¢

Location Ratio Observer
=
TFrankfurt/M, winter 4 Georgii
Frankfurt/M, summer 6 Georgii
St. Moritz 10 Weber
Florida 42 Junge
Hawaii . 52 Junge
Zugspitze (3000 meters) 57 Georgii
Mauna Kea (3200 meters) 360 Junge

@ Georgii (1960).

*Vapor/liquid equilibrium; dominant aqueous form (NH,") at pH>8
*Dependence of aqueous ammonium on pH
*Aqueous ammonia fraction as a function of cloud water

Ammonia Reactions in Water

* lonic dissociation
—H,0 +NH; =NH,*+ OH-
* pH dependent association with (bi)sulfate
— Formation of ammonium sulfate
* (NH,),S0,
— Formation of ammonium bisulfate
* (NH,)HSO,

TABLE 2.7 Estimated Global Ammonia Emissions

Emission
Source of Ammonia (Te™N) yr ")
ANTHROPOGENIC
Dairy cattle 55
Beef cattle/buffalo 8.7
Agricultural practices Pigs 2-§
result in 2/3 of total Horses 12
lobal ammonia Sheep/gouts 2
g 0. . Poultry 1.3
cmissions Fentilizer 6.4
Biomass burning 2.0
Subtotal 30.4
NATURAL
Wild animals 25
Vegetation 5.1
Ocean _1.0
Subtotal 146
Total 45.0

Source: Dentener and Crutzen (1994).
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Figure 3. Sources of typical aerosol species.

Pandis et al., 1995




