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Recap of First 2 Weeks! 
¥! Atmospheric Chemistry (at light speed) 
¥! Particle Sizes (including Sources) 
¥! Particle Velocity (including Drag) 

Mass Transfer 

¥! Condensation 
¥! Correction Factors 

¥! Time Scales 

¥! Current Research  
Ð! Surface tension below 10 nm (recall nucleation) 
Ð! Accommodation coefficient not constant! 

¥! Unsteady-state diffusion to particle surface gives 

¥! FickAûs law says that the flux (per area) is proportional to the diffusivity times the 
concentration gradient (but in the reverse direction) 

¥! Combining these two equations we get 
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¥! With boundary conditions  

¥! Allowing the solution 

 
¥! At steady state, we have 
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¥! Plugging back into FickAûs law (and assuming _continuum_ regime)  

¥! Also, mass balance gives 

¥! Combining these two equations we get 
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But wait!  
What if we are not in the continuum regime? 
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¥! the transition regime is rigorously governed by the Boltzmann 

equation; however, since no solution exists to the general form of the 
Boltzmann equation for the full range of Knudsen numbers of interest, 
the approach taken has been a conceptual one which uses the 
assumption that non-continuum effects are limited to a region near the 
particle, namely  

¥! flux matching - is the name given to the approach proposed by Fuchs, 
whereby the flux due to diffusion in the region near the particle is 
matched to the flux predicted by the continuum  theory for the region 
beyond     ; the key is for the method to predict the correct flux at the 
surface of the particle. 

  Rp < r < lD

  lD

Condensation for  
Transition-Regime Particles 

¥! Using the approach of Dahneke (1983), we start with an expression 
for the flux of vapor molecules to a surface within a distance     of 
the surface 

 
¥! using the following boundary condition 
 
 
¥! we use a characteristic length scale LAû and                         to obtain 

a dimensionless form of this equation 

 
¥! Consider a spherical particle with the boundary conditions 

 
 
¥! where LAû=Dp/2, so that now we have 
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¥! The condensation rate can now be 
expressed as  

¥! Note that 

 
 
 
¥! Fuchs suggested solving by equating the 

net molecular fluxes at a distance  

¥! which allows you to solve both flux 
expressions to get 
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Transition Regime Corrections 
for Condensation 

cf. !"# 
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But wait!  
What if this is too slow to matter? 

¥! Under dilute conditions, the expression for the rate of 
change of radius with time becomes 

¥! for       =0 and       =constant, we can integrate this result 
to get 

¥! then we can derive a first-order equation for which the 
characteristic time is given by 
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¥! the rate of dissociation 

of A is then given by 
¥! so that the 

characteristic time of 
dissociation may be 
expressed as 

frkkABC! +
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What is a characteristic time? 
e.g. for a chemical reaction 

Process Characteristic Time 

gas-phase diffusion  

phase equilibrium  

aqueous ionization 

aqueous diffusion 

aqueous reaction  

Comparison of Characteristic 
Times 

6.1 

  
! i =

1
kf + kr B[ ]e + C[ ]e( )

  
τda =

Rp
2

π 2Dl

  

! ra = "
1

1
S IV( )[ ]

d S IV( )[ ]
dt

  

! rg = "
1

1

SO2 g( )[ ]
d S IV( )[ ]

dt

  
! dg =

Rp
2

4Dg

  
! p = Dl

4RTH
" c

# 
$ 

% 
& 

2

¥! Gas phase diffusion 
Ð! the unsteady state 

diffusion of a vapor 
species to the surface 
of a (stationary) 
droplet (Continuum 
regime) 

 

¥! subject to the 
boundary conditions: 
Ð! c(r,0)=c! , for r> Rp  
Ð! c(r,t)=c! , for r! $  

Ð! c(Rp,t)=cs(t)  

¥! c(r,t) {or c}- concentration of vapor molecules at 
position r from the center of the droplet at time t;  

¥! cs - concentration at droplet surface, i.e. r=Rp 

¥! c! - concentration in bulk, i.e. r! $  
¥!     - speed of molecule 
¥! Dg - molecular diffusivity of condensing vapor in air 
¥! "dg - characteristic time for concentration profile to 

reach steady state 

Ð! e.g. transient absorption 
     of SO2  
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0.1 0.025 

0.01 0.00025 

0.001 0.0000025 

¥! characteristic time for the process 
 
 
 
 
 
¥! recalling that 

¥! transfer across the droplet surface is 
a flat interface on the molecular 
scale 

¥! where C is the concentration of A in 
the liquid phase and     is its liquid-
phase diffusivity 
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Species Molecular 
Weight 

Henry's Law 
Coefficient 

! p (sec) 

O3  48 9.4x10-3  6.4x10-15  

H2O2  34 7.1x104  0.26 
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Time Scale for Aqueous 
Diffusion + Reaction 

¥! unsteady state diffusion gives us 
¥! subject to 

Ð! C(r,0)=0    0%r%Rp 

Ð!           r=0, t>0 
Ð! C(r,t)=Cs   r=Rp, t>0 

¥! so that the characteristic time for 
aqueous diffusion is given by  

¥! the time scale for aqueous 
reaction may be defined in two 
ways, relative to either the gas 
phase reactant concentration or 
the aqueous phase 
concentration; 
Ð! for example, for the example of 

condensed SO2 

Ð! or 
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Time Scales for Condensation 
¥! Processes important for 

condensation: 
Ð! diffusion of gas molecules from 

bulk to particle surface - time to 
establish a steady-state 
concentration profile 

Ð! transfer across the gas/liquid 
interface - time to establish local 
equilibrium across the interface 

Seinfeld, 1986 

¥! Processes important for 
condensation: 
Ð! ionization of the species - time to 

reach equilibrium for all 
dissociating species 

Ð! diffusion of dissolved species in 
the aqueous phase - time for 
liquid-phase molecules to diffuse 
through particle to produce a 
uniform concentration in the 
aqueous phase 

Ð! chemical reaction ("intrinsic 
reaction rate") - time to convert 1/e 
of reactants to products 

Seinfeld and Pandis, 
Fig. 10.7 

¥! particles growing by volume 
reaction have more large 
particles and a wider distribution 
than other mechanisms 

¥! particles that grow by diffusion 
growth with no vapor pressure 
maintain the narrowest size 
distribution  

Seinfeld and Pandis, 
Fig. 10.7 

Pandis et al., 1995 

But wait!  
What if the molecules donAût stick? 

We describe this behavior by an 
Aþaccommodation coefficientAÿ or an 

Aþuptake coefficientAÿ 
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Longer Simulation 
Length 

Higher Temperature Smaller Particle 
Size 

Structure of Water 
AþCondensingAÿ on 
Particles 

Time = 2 ns 

Time = 5 ns 

¥! NaCl solution reservoir 

¥! Simulates a grand canonical (constant RH) ensemble 

¥! Equilibrates with humid air 

¥! Ambient pressure fixed by nitrogen molecules 

Simulating Atmospheric Humidity 

Time Evolution of Uptake Coefficient 
Effect of Surface Coverage on 

Uptake Coefficient 

¥! Fraction of surface area covered by water 
¥! Solvation effect Ð dominant for planar surfaces 

Effect of Surface Roughness on 
Uptake Coefficient 

¥! Fraction of molecules at corners and edges 
¥! Size effect dominant for nano-particles 

R. Bahadur and L.M. Russell, 
Journal of Chemical Physics, 129 
(2008) 

¥! Combined water 
uptake effects of 
Ð! Surface Coverage Fraction 

(Composition Effect)  
Ð! Edge Fraction (Roughness 

Effect)  


