
9 Dynamics of Single Aerosol Particles 

In this chapter, we focus on the processes involving a single aerosol particle in a 
suspending fluid and the interaction of the particle with the suspending fluid itself. We 
begin by considering how to characterize the size of the particle in an appropriate way in 
order to describe transport processes involving momentum, mass, and energy. We then 
treat the drag force exerted by the fluid on the particle, the motion of a particle through a 
fluid due to an imposed external force and resulting from the bombardment of the particle 
by the molecules of the fluid. Because of its importance in atmospheric aerosol processes 
and aqueousphase chemistry, mass transfer to single particles will be treated separately in 
Chapter 12. 

9.1 CONTINUUM AND NONCONTINUUM DYNAMICS: 
THE MEAN FREE PATH 
As we begin our study of the dynamics of aerosols in a fluid (e.g., air), we would like to 
determine, from the perspective of transport processes, how the fluid "views" the particle or 
equivalently how the particle "views" the fluid that surrounds it. On the microscopic scale 
fluid molecules move in a straight line until they collide with another molecule. After 
collision, the molecule changes direction, moves for a while until it collides with another 
molecule, and so on. The average distance traveled by a molecule between collisions with 
other molecules is defined as its mean free path. Depending on the relative size of a particle 
suspended in a gas and the mean free path of the gas molecules around it, we can distinguish 
two cases. If the particle size is much larger than the mean free path of the surrounding gas 
molecules, the gas behaves, as far as the particle is concerned, as a continuous fluid. The 
particle is so large and the characteristic lengthscale of the motion of the gas molecules so 
small that an observer of the system sees a particle in a continuous fluid. At the other 
extreme, if the particle is much smaller than the mean free path of the surrounding fluid, an 
outside observer of the system (Figure 9.1) sees a small particle and gas molecule moving 
discretely around it. The particle is small enough that it resembles another gas molecule. 

As usual in transport phenomena, one seeks an appropriate dimensionless group that 
reflects the relative lengthscales outlined above. The key dimensionless group that defines 
the nature of the suspending fluid relative to the particle is the Knudsen number (Kn) 

(9.1) 
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FIGURE 9.1 Schematic of the three regimes of suspending fluid-particle interactions: (a) 
continuum regime (Kn → 0), (b) free molecule (kinetic) regime (Kn → ∞), and (c) transition 
regime (Kn -1). 

where λ is the mean free path of the fluid, Dp the particle diameter, and Rp its radius. Thus the 
Knudsen number is the ratio of two lengthscales, a length characterizing the "graininess" of 
the fluid with respect to the transport of momentum, mass, or heat, and a length scale 
characterizing the particle size, its radius. 

Before we discuss the role of the Knudsen number, we need to consider the calculation 
of the mean free path for a vapor. It will soon be necessary to calculate the mean free path 
both for a pure gas and for gases composed of mixtures of several components. Note that 
even though air consists of molecules of N2 and O2 , it is customary to talk about the mean 
free path of air, λair, as if air were a single chemical species. 

Mean Free Path of a Pure Gas Let us start with the simplest case, a particle suspended 
in a pure gas B. If we are interested in characterizing the nature of the suspending gas 
relative to the particle, the mean free path that appears in the definition of the Knudsen 
number is ΛBB. The subscript denotes that we are interested in collisions of molecules of B 
with other molecules of B. Ordinarily, air will be the predominant vapor species in such a 
situation. The mean free path ΛBB has been defined as the average distance traveled by a B 
molecule between collisions with other B molecules. The mean speed of gas molecules of 
B, cB is (Moore 1962, p. 238) 

(9.2) 

where MB is the molecular weight of B. Note that larger molecules move more slowly, 
while the overall mean speed of a gas increases with temperature. The mean speed of N2 at 
298 K is, according to (9.2), cN2 = 474 m s - 1 and for oxygen co2 = 444 m s -1 . Molecular 
velocities of other atmospheric gases at 298 K are shown in Table 9.1. 

Let us estimate what happens to a B molecule during a unit of time, say, a second. 
During this second the molecule travels on average (CB X 1 s) m. If during the same 



398 DYNAMICS OF SINGLE AEROSOL PARTICLES 

TABLE 9.1 Molecular Velocities of Some Atmospheric Gases 
at 298 K 

Gas 

NH3 

Air 
HC1 
HNO3 

H2SO4 
(CH2)3(COOH)2 

Molecular Weight 

17 
28.8 
36.5 
63 
98 

132 

Mean Velocity, m s-1 

609 
468 
416 
316 
254 
219 

second it undergoes ZBB collisions, then its mean free path will be by definition 

(9.3) 

Thus to calculate ΛBB we need to first calculate the collision rate of B molecules, ZBB. Let 
CTB be the diameter of a B molecule. In 1 s a molecule travels a distance CB and collides 
with all molecules whose centers are in the cylinder of radius σB and height CB. Note that 
two molecules of diameter σB collide when the distance between their centers is σB. If NB 
is the number of B molecules per unit volume, then the number of molecules in the 
cylinder is πσ2

BcBNB. Above we have calculated the number of collisions assuming that 
one molecule of B is moving while the rest are immobile and in the process we have 
underestimated the frequency of collisions. In general, all particles are moving in random 
directions and we need to account for this motion by estimating their relative speed. If two 
particles move in opposite directions, their relative speed is 2 CB (Figure 9.2). If they move 
in the same direction, their relative speed is zero, while for a 90° angle their relative 

FIGURE 9.2 Relative speeds (RSs) of molecules for (a) head-on collision (RS = 2c), (b) grazing 
collision (RS = 0), and (c) right-angle collision (RS = c). For molecules moving in the same 
direction with the same velocity, the relative velocity of approach is zero. If they approach head-on, 
the relative velocity of approach is 2c. If they approach at 90°, the relative velocity of approach is 
the sum of the velocity components along the line. 
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velocity of approach is CB (Figure 9.2). One can prove that the latter situation represents 
the average, so we can write 

ZBB = π σ 2
B c B N B (9.4) 

and the mean free path ΛBB is given by 

(9.5) 

Note that the larger the molecule size, σB, and the higher the gas concentration, the smaller 
the mean free path. 

Unfortunately, even though (9.5) provides valuable insights into the dependence of ΛBB 
on the gas concentration and molecular size, it is not convenient for the estimation of the 
mean free path of a pure gas, because one needs to know the diameter of the molecule σB, a 
rather ill-defined quantity as most molecules are not spherical. To make things even worse, 
the mean free path of a gas cannot be measured directly. However, the mean free path can be 
theoretically related to measurable gas microscopic properties, such as viscosity, thermal 
conductivity, or molecular diffusivity. One therefore can use measurements of the above 
gas properties to estimate theoretically the gas mean free path. For example, the mean 
free path of a pure gas can be related to the gas viscosity using the kinetic theory of gases 

(9.6) 

where µB is the gas viscosity (in kg m -1 s -1), p is the gas pressure (in Pa), and MB is the 
molecular weight of B. 

Calculation of the Air Mean Free Path The air viscosity at T = 298 K and 
p = 1 atm is µxair = 1.8 x 10 - 5 kgm - 1 s - 1 . The air mean free path at T = 298 K 
and p = 1 atm is then found using (9.6) to be 

λair(298K, 1 atm) = 0.0651 µm (9.7) 

Thus for standard atmospheric conditions, if the particle diameter exceeds 0.2 µm or so, 
Kn < 1, and with respect to atmospheric properties, the particle is in the continuum regime. 
In that case, the equations of continuum mechanics are applicable. When the particle 
diameter is smaller than 0.01 µm, the particle exists in more or less a rarified medium and its 
transport properties must be obtained from the kinetic theory of gases. This Kn » 1 limit is 
called the free molecule or kinetic regime. The particle size range intermediate between these 
two extremes (0.01-0.2 µm) is called the transition regime, and there the particle transport 
properties result from combination of the two other regimes. 

The mean free path of air varies with height above the Earth's surface as a result of 
pressure and temperature changes (Chapter 1). This change for standard atmospheric 
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FIGURE 9.3 Mean free path of air as a function of altitude for the standard U.S. atmosphere 
(Hinds 1999). 

conditions (see Table A.7) is shown in Figure 9.3. The net result is an increase of the air 
mean free path with altitude, to roughly 0.2 µm at 10 km. 

Mean Free Path of a Gas in a Binary Mixture If we are interested in the diffusion of a 
vapor molecule A toward a particle, both of which are contained in a background gas B (e.g., 
air), then the description of the diffusion process depends on the value of the Knudsen 
number defined on the basis of the mean free path ΛAB . The mean free path ΛAB is defined as 
the average distance traveled by a molecule of A before it encounters another molecule of A 
or B. Note that because ordinarily the concentration of A molecules is several orders of 
magnitude lower than that of the background gas B (air), collisions between A molecules can 
be neglected, and the collisions between A and B are practically equal to the total number of 
collisions for an A molecule. The Knudsen number in the case of interest is given by 

(9.8) 

and we need to estimate λAB. Jeans showed that the effective mean free path of molecules 
of A, ΛAB, in a binary mixture of A and B is (Davis 1983) 

(9.9) 

where NA and NB are the molecular number concentrations of A and B, σA and σAB are the 
collision diameters for binary collisions between molecules of A and molecules of A and 
B, respectively, where 

(9.10) 
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and z = mA /mB = M A / M B is the ratio of molecular masses (or molecular weights) of A and 
B. The first term in the denominator of (9.9) accounts for the collisions between A molecules, 
while the second for the collisions between A and B molecules. If the concentration of 
species A is very low (a good assumption for almost all atmospheric situations), NA « NB 
and (9.9) can be simplified by neglecting the collisions between A molecules as 

(9.11) 

Note that the molecular concentration NB can be calculated from the ideal-gas law 
NB = p/kT, where p is the pressure of the system. The mean free path of the trace gas A in 
the background gas does not depend on the concentration of A itself. This is not a surprise, 
as we have assumed that the concentration of A is so low that A molecules never get to 
interact with each other. However, the mean free path of A depends on the sizes of the A 
and B molecules, and on the temperature and pressure of the mixture. 

The mean free path once more is usually calculated not by (9.11) because of the 
difficulty of directly measuring σAB, but from the binary diffusivity of A in B, DA B -
This diffusivity can be either measured directly or calculated theoretically from the 
Chapman-Enskog theory for binary diffusivity (Chapman and Cowling 1970) by 

(9.12) 

where Ω(1,1)
AB' is the collision integral, which has been tabulated by Hirschfelder et al. (1954) 

as a function of the reduced temperature T* = kT/ΕAB, where εAB is the Lennard-Jones 
molecular interaction parameter. For hard spheres Ω(1,1)

AB = 1, and for this case the 
following relationship connects the mean free path λ A B , and the binary diffusivity DAB 

(9.13) 

Note the appearance of the molecular mass ratio z = MA/MB in (9.13). Many investigators 
have assumed z « l either explicitly or implicitly and this has been the source of some 
confusion. We can identify certain limiting cases for (9.13): 

(9.14) 

Additional relationships have been proposed to determine the mean free path in terms 
of DAB

. From zero-order kinetic theory, Fuchs and Sutugin (1971) showed that 

(9.15) 
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while Loyalka et al. (1989) used 

(9.16) 

An additional relationship between the mean free path and the binary diffusivity can be 
derived using the kinetic theory of gases. The derivation relies on a simple argument 
involving the flux of gas molecules across planes separated by a distance X. Consider the 
simplest case, only a single gas, some of the molecules of which are painted red. Assume 
that the number N' of red molecules is greater in one direction along the x axis, and 
consequently, if the total pressure is uniform throughout the gas, the number N" of unpainted 
molecules must also vary along the x direction. Let us define the "mean free path" for 
diffusion as X, so that X is the distance both left and right of the plane at x where the 
molecules (both painted and unpainted) experienced their last collisions. We are purposely 
not defining X precisely at this point. Figure 9.4 depicts planes at x* + X and x* — X. 

For molecules in three-dimensional random motion, the number of molecules striking a 
unit area per unit time is ¼Nc. If λ is the average distance from the control surface at which 
the molecules crossing the x* surface originated, then the left-to-right flux of painted 
molecules is ¼cN'(x* - λ), while the right-to-left is ¼cN'(x* + λ). 

The net left-to-right flux of painted molecules through the plane of x* is (in molecules 
cm - 2 s -1) 

(9.17) 

Expanding both N'(x* - X) and N'(x* + X) in Taylor series about x*, we obtain 

(9.18) 

FIGURE 9.4 Control surfaces for molecular diffusion as envisioned in the elementary kinetic 
theory of gases. 
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Comparing (9.18) with the continuum expression J = —D(∂N'/∂x) results in 
D = 0.5cλ or, equivalently 

(9.19) 

Since the red molecules differ from the others only by a coat of paint, X and D apply to all 
molecules of the gas. Thus the diffusional mean free path X is defined as a function of the 
molecular diffusivity of the vapor and its mean speed by (9.19). 

Expressions (9.13), (9.15), (9.16), and (9.19) have different numerical constants and 
their use leads to mean free paths λAB that differ by as much as a factor of 2 for typical 
atmospheric gases. The consequences of using these different expressions are discussed in 
Chapter 12. In the remaining sections of this chapter we focus on the interactions of 
particles with a single gas, air, with a mean free path given by (9.6) and (9.7). 

9.2 THE DRAG ON A SINGLE PARTICLE: STOKES' LAW 

We start our discussion of the dynamical behavior of aerosol particles by considering the 
motion of a particle in a viscous fluid. As the particle is moving with a velocity u∞, there is a 
drag force exerted by the fluid on the particle equal to Fdrag. This drag force will always be 
present as long as the particle is not moving in a vacuum.To calculate Fdrag, one must solve 
the equations of fluid motion to determine the velocity and pressure fields around the particle. 

The velocity and pressure in an incompressible Newtonian fluid are governed by the 
equation of continuity (a mass balance) 

(9.20) 

and the Navier-Stokes equations (a momentum balance) (Bird et al. 1960), the x 
component of which is 

(9.21) 

where u = (ux, uy, uz) is the velocity field, p(x,y, z) is the pressure field, µ is the viscosity 
of the fluid, and gx is the component of the gravity force in the x direction. To simplify our 
discussion let us assume without loss of generality that gx — 0. The y and z components of 
the Navier-Stokes equations are similar to (9.21). 

Let us nondimensionalize the Navier-Stokes equations by introducing a characteristic 
velocity u0 and characteristic length L and defining the dimensionless variables 

(9.22) 

and the dimensionless time and pressure: 
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Then (9.20) and (9.21) can be rewritten using the definitions presented above 

(9.23) 

and 

(9.24) 

where Re = uoLp/µ, is the Reynolds number, representing the ratio of inertial to viscous 
forces in the flow. Note that all the parameters of the problem have been neatly combined 
into one dimensionless number, Re. The above nondimensionalization provides us with 
considerable insight, namely, that the nature of the flow will depend exclusively on the 
Reynolds number. 

For flow around a particle submerged in a fluid, the characteristic lengthscale L is the 
diameter of the particle Dp, and u0 can be chosen as the speed of the undisturbed fluid 
upstream of the body, u∞. Therefore 

One could also use the radius Rp of the particle as L and then define Re as pu∞Rp/µ. 
Clearly, these differ only by a factor of 2. We will use the Reynolds number Re defined on 
the basis of the particle diameter in our subsequent discussion. 

When viscous forces dominate inertial forces, Re « 1, and the type of flow that results 
is called a low-Reynolds-number flow or creeping flow. In this case the Navier-Stokes 
equations can be simplified as one can neglect the left-hand-side (LHS) terms of (9.24) 
(note that 1/Re then is a large number) to obtain at steady state: 

(9.25) 

The solution of (9.23) and (9.25) to obtain the velocity and pressure distribution around a 
sphere was first obtained by Stokes. The assumptions invoked to obtain the solution are (1) 
an infinite medium, (2) a rigid sphere, and (3) no slip at the surface of the sphere. For the 
solution details, we refer the reader to Bird et al. (1960, p. 132). 

Using the spherical coordinate system defined in Figure 9.5, the pressure field around 
the particle is given by (Bird et al. 1960) 

(9.26) 

where Rp is the particle radius, p0 is the pressure in the plane z = 0 far from the sphere, 
u∞ is the approach velocity far from the sphere, and gravity has been neglected. 

Our objective is to calculate the net force exerted by the fluid on the sphere in the 
direction of the flow. This force consists of two contributions. At each point on the surface 
of the sphere there is a force acting perpendicularly to the surface. This is the normal force. 
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At every point there are 
pressure and friction 
forces acting on the 
sphere surface 

FIGURE 9.5 Coordinate system used in describing the flow of a fluid about a rigid sphere. 

At each point there is also a tangential force exerted by the fluid due to the shear stress 
caused by the velocity gradients in the vicinity of the surface. 

To obtain the normal force on the sphere, one integrates the component of the pressure 
acting perpendicularly to the surface. Then the normal force Fn is found to be 

Fn = 2πµRpu∞ (9.27) 

The calculation of the tangential force requires the calculation of the shear stress τrθ and 
then its integration over the particle surface to find the tangential force Ft 

Ft = 4πµRpu∞ (9.28) 

Both forces act in the z direction (Figure 9.5) and the total drag exerted by the fluid on the 
sphere is 

Fdrag = Fn + Ft = 6πµRpu∞ (9.29) 

which is known as Stokes' law. Note that the case of a stationary sphere in a fluid moving 
with velocity u∞ is entirely equivalent to that of a sphere moving with a velocity u∞ through 
a stagnant fluid. In both cases the force exerted by the fluid on the particle is given by (9.29). 

9.2.1 Corrections to Stokes' Law: The Drag Coefficient 

Stokes' law has been derived for Re « 1, neglecting the inertial terms in the equation 
of motion. If Re= 1, the drag predicted by Stokes' law is 13% low, due to the errors 
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introduced by the assumption that inertial terms are negligible. To account for these terms, 
the drag force is usually expressed in terms of an empirical drag coefficient CD as 

Fdrag =½CDAppu2
∞ (9.30) 

where Ap is the projected area of the body normal to the flow. Thus for a spherical particle 
of diameter Dp 

Fdrag=⅛πCDpD2
pu2

∞ (9.31) 

where the following correlations are available for the drag coefficient as a function of the 
Reynolds number: 

Re 1 (Stokes' law) 

CD = 18.5 Re -0 .6 Re 1 
(9.32) 

Note for CD = 24/Re, the drag force calculated by (9.31) is Fdrag = 3ΠµDpu∞, equivalent 
to Stokes' law. 

To gain a feeling for the order of magnitude of Re for typical aerosol particles, the 
Reynolds numbers of spherical particles falling at their terminal velocities in air at 298 K 
and 1 atm are shown in Table 9.2. Thus for particles smaller than 20 urn (virtually all 
atmospheric aerosols) Stokes' law is an accurate formula for the drag exerted by the air. 
For larger particles (rain and large cloud droplets) or for particles in rapid motion one 
needs to use the drag coefficient correlations presented above. 

9.2.2 Stokes' Law and Noncontinuum Effects: Slip Correction Factor 

Stokes' law is based on the solution of equations of continuum fluid mechanics and 
therefore is applicable to the limit Kn → 0. The nonslip condition used as a boundary 
condition is not applicable for high Kn values. When the particle diameter Dp approaches the 
same magnitude as the mean free path X of the suspending fluid (e.g., air), the drag force 
exerted by the fluid is smaller than that predicted by Stokes' law. To account for 

TABLE 9.2 Reynolds Number for Particles in 
Air Falling at Their Terminal Velocities at 298 K 
Diameter, urn 

0.1 
1 

10 
20 
60 

100 
300 

Re 

7 × 10 -9 

2.8 × 10 -6 

2.5 ×10-3 

0.02 
0.4 
2 
20 
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TABLE 93 Slip Correction Factor Cc for 
Spherical Particles in Air at 298 K and 1 atm 
Dp, µm 

0.001 
0.002 
0.005 
0.01 
0.02 
0.05 
0.1 
0.2 
0.5 
1.0 
2.0 
5.0 

10.0 
20.0 
50.0 

100.0 

cc 

216 
108 
43.6 
22.2 
11.4 
4.95 
2.85 
1.865 
1.326 
1.164 
1.082 
1.032 
1.016 
1.008 
1.003 
1.0016 

noncontinuum effects that become important as Dp becomes smaller and smaller, the slip 
correction factor Cc is introduced into Stokes' law, written now in terms of particle diameter 
Dp as 

(9.33) 

where 

(9.34) 

A number of investigators over the years have determined the values for the numerical 
coefficients used in the expression above. Allen and Raabe (1982) have reanalyzed 
Millikan's data (based on experiments performed between 1909 and 1923) to produce the 
updated set of parameters shown above. 

Values of Cc as a function of the particle diameter Dp in air at 25°C are given in Table 9.3. 
The slip correction factor is generally neglected for particles exceeding 10 µm in diameter, 
as the correction is less than 2%. On the other hand, the drag force for a 0.1 urn in diameter 
particle is reduced by almost a factor of 3 as a result of this slip correction. 

9.3 GRAVITATIONAL SETTLING OF AN AEROSOL PARTICLE 

Up to this point, we have considered the drag force on a particle moving at a steady 
velocity u∞ through a quiescent fluid. Recall that this case is equivalent to the flow of a 
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fluid at velocity u∞ past the stationary particle. The motion of the particle, however, arises 
in the first place because of the action of some external force on the particle such as 
gravity. The drag force arises as soon as there is a difference between the velocity of the 
particle and that of the fluid. The basis of the description of the behavior of a particle in a 
fluid is an equation of motion. To derive the equation of motion for a particle of mass mp, 
let us begin with a force balance on the particle, which we write in vector form as 

(9.35) 

where v is the velocity of the particle and Fi is the ith force acting on the particle. 
For a particle falling in a fluid there are two forces acting on it, the gravitational force 

mpg and the drag force Fdrag. Therefore, for Re < 0.1, the equation of motion becomes 

(9.36) 

where the second term of (9.36) is the corrected Stokes drag force on a particle moving 
with velocity v in a fluid having velocity u. Equation (9.36) implicitly assumes that even 
though the particle motion is unsteady, this acceleration is slow enough that Stokes' law 
applies at any instant. This equation can be rewritten as 

(9.37) 

where 

(9.38) 

is the characteristic relaxation time of the particle. 
Let us consider the case of a particle in a quiescent fluid (u = 0) starting with zero velocity 

and let us take the z axis as positive downward. Then the equation of motion becomes 

(9.39) 

and its solution is 

vz(t) = g[l - exp(-t/)] (9.40) 

For t» , the particle attains a characterstic velocity, called its terminal settling velocity 
vt = g or 

(9.41) 
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TABLE 9.4 Characteristic Time Required 
for Reaching Terminal Settling Velocity 

Dp, µm 

0.05 
0.1 
0.5 
1.0 
5.0 

10.0 
50.0 

, S 

4 × 10 -8 

9.2 × 10 -8 

1 × 10 -6 

3.6 × 10 -6 

7.9 × 10 -5 

3.14 × 10-4 

7.7 × 10-3 

For a spherical particle of density ρp in a fluid of density ρ, mp — (π/6)D3(ρp — ρ), 
where the factor (ρp — ρ) is needed to account for both gravity and buoyancy. However, 
since generally ρp » ρ,mp = (π/6)D3

pρp and (9.41) can be rewritten in the more 
convenient form: 

(9.42) 

The timescale  indicates the time required by the particle to reach this terminal settling 
velocity and is given in Table 9.4. The relaxation time x also describes the time required by a 
particle entering a fluid stream, to approach the velocity of the stream. Thus the characteristic 
time of most particles of interest to achieve steady motion in air is extremely short. 

Settling velocities of unit density spheres in air at 1 atm and 298 K as computed from 
(9.42) are given in Figure 9.6. Submicrometer particles settle extremely slowly, only a few 

FIGURE 9.6 Settling velocity of particles in air at 298 K as a function of their diameter. 
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centimeters per hour. Particles larger than 10 µm settle with speeds exceeding 10m h - 1 

and therefore are expected to have short atmospheric lifetimes. 
Our analysis so far is applicable to Re < 0.1 or particles smaller than about 20 µm 

(Table 9.2). For larger particles, one needs to use the drag coefficient as an empirical 
means of representing the drag force for higher Reynolds numbers. The equation 
along the direction of motion of the particle in scalar form, assuming no gas velocity, 
is then 

(9.43) 

At steady-state vz = vt, the particle reaches its terminal velocity given by 

(9.44) 

However, as CD is a function of Re and therefore vt, we have only an implicit expression 
for vt in (9.44). One needs then to solve (9.44) numerically with CD calculated by (9.32) 
or one can use the following technique (Flagan and Seinfeld 1988). 

If we form the product 

(9.45) 

and substitute into this the vt given by (9.44), we obtain 

(9.46) 

CDRe2 can be calculated from (9.32) and one can prepare the plot of CDRe2 versus Re 
shown in Figure 9.7. The terminal velocity can now be calculated as follows. First, we 
calculate CDRe2 using (9.46). Then using Figure 9.7, we calculate Re. Then 

and there is no need to solve the system of nonlinear algebraic equations. 

Settling Velocity Calculate the settling velocity of a 200-um-diameter droplet 
with density ρp = 1 g cm - 3 . What would be the value if one uses Stokes' law? 

For a drop with Dp = 200 µm using (9.34), Cc =1 and therefore from (9.46) 
CD Re2 = 385. Using Figure 9.7, we find that the corresponding Reynolds number is 
roughly 10. Now the terminal velocity can be calculated from the definition of Re 
and it is approximately 75 cms - 1 . 

Using Stokes' law given by (9.42) we calculate vt = 120 cm s -1 . Stokes' law 
overestimates the settling speed of such a droplet by 60%. 
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FIGURE 9.7 CDRe2 as a function of Re for a sphere. 

9.4 MOTION OF AN AEROSOL PARTICLE IN AN EXTERNAL FORCE FIELD 

The force balance presented in (9.35) describes the motion of a particle in a force field. As 
long as the particle is not moving in a vacuum, the drag force will always be present, so let 
us remove the drag force from the summation of forces 

(9.47) 

where Fei denotes external force i (those forces arising from external potential fields, such 
as gravity and electrical forces). 

Situations in which a charged particle moves in an electric field are important in several 
gas-cleaning devices and aerosol measurements. If a particle has an electric charge q in an 
electric field of strength E, an electrostatic force 

Fee = qE 

acts on the particle. The equation of motion for a particle of charge q moving at velocity v 
in a fluid with velocity u in the presence of an electric field of strength E is 

(9.48) 
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At steady state in the absence of a background fluid velocity, the particle velocity is such 
that the electrical force is balanced by the drag force and 

(9.49) 

where Ve is termed the electrical migration velocity. Note that the characteristic time 
for relaxation of the particle velocity to its steady-state value is still given by 
τ = mpCc/3πµDp regardless of the external force influencing the particle. Thus, as long 
as τ is small compared to the characteristic time of change in the electric force, the 
particle velocity is given by (9.49). Defining the electrical mobility of a charged particle 
Be as 

(9.50) 

then the electrical migration velocity is given by 

Ve = BeE (9.51) 

9.5 BROWNIAN MOTION OF AEROSOL PARTICLES 

Particles suspended in a fluid are continuously bombarded by the surrounding fluid 
molecules. This constant bombardment results in a random motion of the particles known 
as Brownian motion. A satisfactory description of this irregular motion ("random walk") 
can be obtained ignoring the detailed structure of the particle-fluid molecule interaction if 
we assume that what happens to the aerosol fluid system at a given time t depends only on 
the system state at time t. Stochastic processes with this property are known as Markov 
processes. 

In an effort to understand quantitatively Brownian motion, let us consider a parti­
cle that is settling in air owing to the action of gravity. As we have seen, the particle 
eventually reaches a terminal velocity that depends on the size of the particle and the 
viscosity of the air. A drag force is generated, depending on the velocity of the particle, 
that acts in a direction opposite to the direction of motion of the particle. If our particle 
is sufficiently large, say, 1 µm or larger, then the individual bombardment by 
microscopic gas molecules will have little effect on its motion that will be determined 
more or less solely by the continuum fluid drag force and gravity. However, if we 
consider a particle that is only a few nanometers, a size comparable to that of the gas 
molecules, then its motion will exhibit fluctuations from the random collisions that it 
experiences with gas molecules. 

Let us consider a particle that is initially at the origin of our coordinate system. 
Assuming that the only force acting on the particles is that resulting from molecular 
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bombardment by fluid molecules, the particle will start moving randomly from its 
original position and after time t will be at location r1 = (x1,y1,z1). If we repeat the 
same experiment with a second particle, we will find it at r2 = (x2, y2, z2) after the same 
period. Let us continue this experiment with an entire population or an ensemble of 
particles. If we average the displacements (r) of all these particles, we expect the 
average r to be zero since there is no preferred direction in Brownian motion. Can we 
then say anything quantitative about Brownian motion? We know that the average mean 
displacements x, y, z of a particle ensemble will be zero, but this is not enough. We 
need a measure of the intensity of Brownian motion, something that will allow us to 
distinguish between particles moving slowly and randomly and particles moving rapidly 
and randomly. The traditional measure of such intensity is the mean square displacement 
of all particles r2, or for the three directions x2, y2, and z2. Note that these means 
cannot be zero, as averages of positive quantities. We expect that the higher the intensity 
of the motion, the larger the mean square displacements. Since the mean square 
displacement is an important descriptor of the Brownian motion process, let us see what 
we can learn about this quantity. 

Equations (9.35) and (9.47) provide a convenient framework for the analysis of forces 
acting on particles. These equations simply state that the acceleration experienced by the 
particle is proportional to the sum of forces acting on the particle. We have used this 
equation so far for "deterministic" forces, namely, the gravity, drag, and electrical forces. 
We now need to use the stochastic Brownian force, which is simply the product of the 
particle mass mp and the random acceleration a caused by the bombardment by the fluid 
molecules. Then the equation of motion is 

(9.52) 

Dividing by mp, (9.52) becomes 

(9.53) 

where τ is the relaxation time of the particle. The random acceleration a is a discontinuous 
term, since it represents the random force exerted by the suspending fluid molecules that 
imparts an irregular, jerky motion to the particle. The equation of motion written to include 
the Brownian motion has its roots in two worlds: the macroscopic world represented 
by the drag force and the microscopic world presented by the Brownian force. The 
decomposition of the equation of motion into continuous and discontinuous pieces in 
(9.53) is an ad hoc assumption that is intuitively appealing and more important leads to 
successful predictions of particle behavior. Equation (9.53) was first formulated by the 
French physicist, Paul Langevin, in 1908 and is referred to as the Langevin equation. This 
equation will be the starting point in our effort to calculate the mean square 
displacement r2. 

Let us begin by taking the dot product of r and (9.53): 

(9.54) 
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Then ensemble averaging this equation (over many particles) gives 

(9.55) 

Since we assume that there is no preferred direction in a (directional isotropy of 
collisions), r . a will be equal to zero, giving 

(9.56) 

Now since 

(9.57) 

or, equivalently 

(9.58) 

(9.56) becomes 

(9.59) 

The term ½ mpv2 is the kinetic energy of the system and as energy is partitioned equally in 
all three directions, each with an energy of ½kT for a total of 3/2kT, we obtain 
that v2 = 3kT/mp. Thus (9.59) becomes 

(9.60) 

Integrating this ordinary differential equation for r . v we find 

(9.61) 

Now we note that 

(9.62) 

so that (9.61) becomes 

(9.63) 

Next Page
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