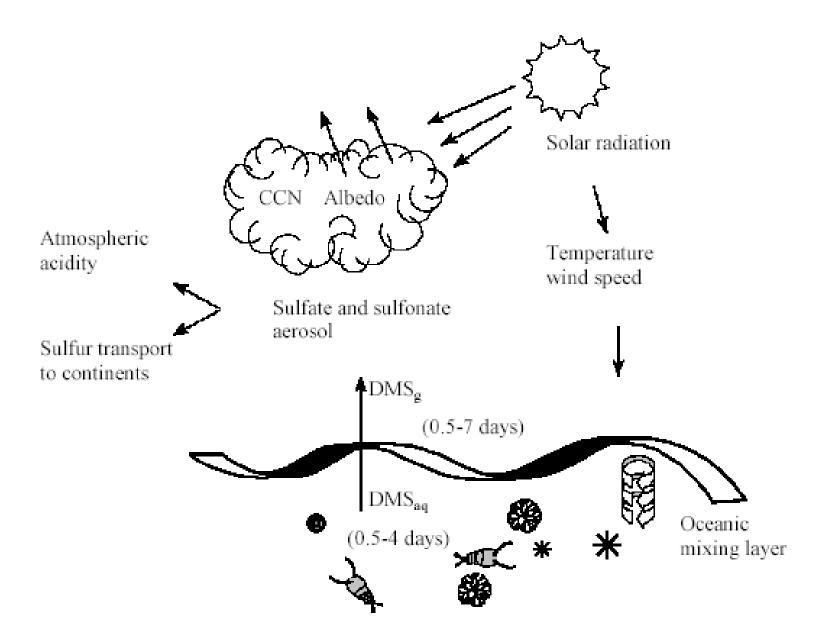
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate


Charlson, Lovelock, Andreae, Warren Presented By John Holecek and Aihua Zhu

Major significance

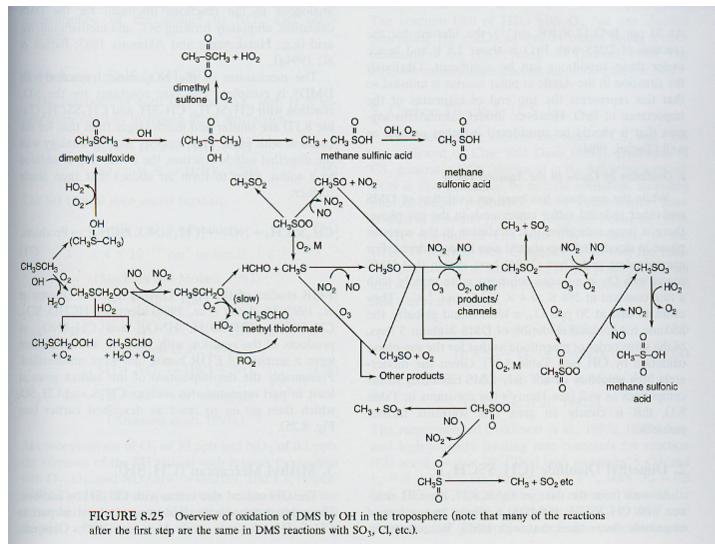
- Proposal that biota could regulate climate
 - Hypothesized possible mechanisms
 - More data was needed to support theory
- Stimulated a great deal of scientific interest
- Cited 1203 times!
- Many assumptions made

What we knew before

- Radiation—Twomey 1977, indirect effect
- Gaia hypothesis Lovelock 1974
- Aerosols (SO₄²⁻) as CCN
- Global sulfur budget Andreae 1985

Global Sulfur budget

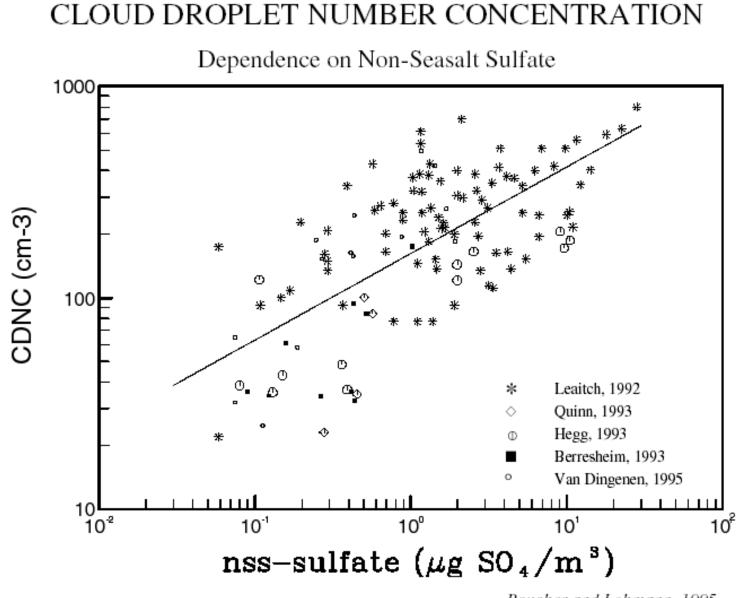
TABLE 6. Sulfur emissions from natural and anthropogenic sources expressed in 10⁹ mol/a


Region	Oceanic	Terrest- rial	Vol- canic	biomass burning	Anthro- pogenic	Biogenic/ total ¹	Natural/ total ²
80°65°N	4	0.02		0.4	3	40%	62%
65°-50°N	19	0.40	43	2.3	534	3	10
50°35°N	31	0.95	53	3.3	942	3	8
35°-20°N	46	2.05	37	7.1	598	7	12
20°–5°N	79	2.52	54	20.7	106	31	52
5°N-0°	26	1.14	17	4.2	18	41	67
0°5°S	25	1.10	27	3.6	16	36	73
5°-20°S	82	2.11	45	17.3	47	44	67
20°-35°S	60	0.86	2	9.2	153	27	28
35°-50°S	60	0.08	8	0.7	24	65	73
50°65°S	50	0.00	Ō	0.2	1	98	98
65°–80°S	4	0.00	1	0.0	0	79	100
N. Hemisphere	200	7.1	210	38	2200	8	16
S. Hemisphere	280	4.1	83	31	240	45	58
Global	480	11.	290	69	2400	15	24

Marine + Terrestrial)*100/(Marine + Terrestrial + Volcanic + Anthropogenic + Biomass burning).

² (Marine + Terrestrial + Volcanic)*100/(Marine + Terrestrial + Volcanic + Anthropogenic +

Bates, T. S., Lamb, B.K., Guenther, A., Dignon, J., Stoiber, R.E. (1992). "Sulfur emissions to the atmosphere from natural sources." <u>J. Atmos. Chem.</u> **14**: 315-

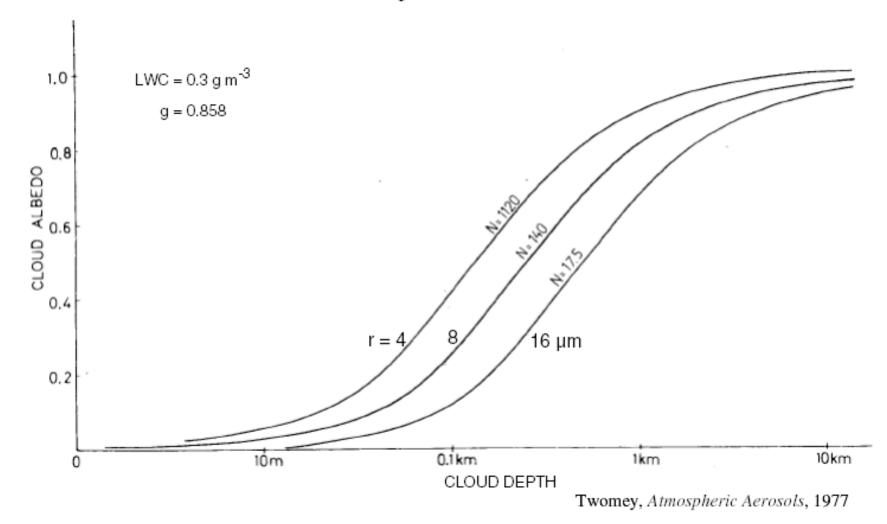

DMS oxidation by OH

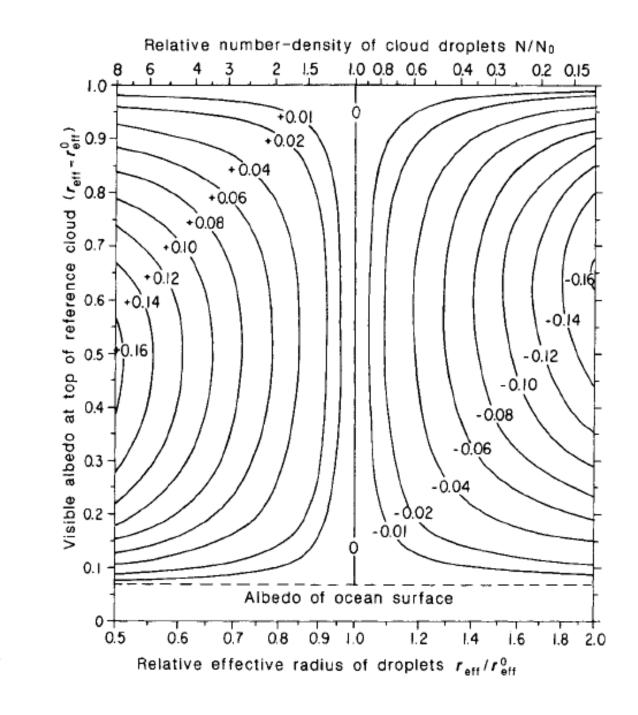
Finlayson-Pitts, B. F., Pitts, J.N. (2000). Chemistry of the upper and lower atmosphere. San Diego, Academic

NSS-SO₄²⁻ particles are the main contributor to CCN

- 1) Significant fraction of submicrometer particles are active CCN
- 2) Most CCN are composed of water soluble materials
- 3) The total number-population of NSS-SO₄²⁻ agrees with measured CCN population
- 4) Much of the light-scattering aerosol in marine air is volatile at elevated temperatures
- 5) The turnover time of CCN is the same order as NSS- SO_4^{2-}

Boucher and Lohmann, 1995

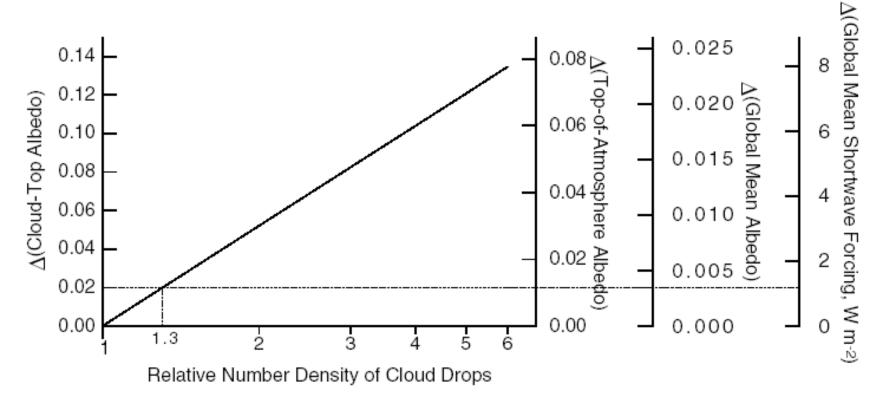

Potential effects of NSS-SO₄²⁻ variations on cloud properties


Basic $L = (4/3) \pi r^3 \rho N$ equation: Three variables: L (liquid water content, gm⁻³) N (number-density of droplets, m⁻³) 1) Hold r fixed: $T^{\uparrow} \longrightarrow L^{\uparrow} \longrightarrow N^{\uparrow} \longrightarrow _^{\uparrow}$ 2) Hold N fixed: $T^{\uparrow} \longrightarrow L^{\uparrow} \longrightarrow r^{\uparrow} \longrightarrow _^{\downarrow}$

3) Hold L fixed: $T^{\uparrow} \longrightarrow DMS^{\bullet} \longrightarrow N^{\uparrow} \longrightarrow r^{\bullet} \longrightarrow _^{\uparrow}$ ----Twomey's effect

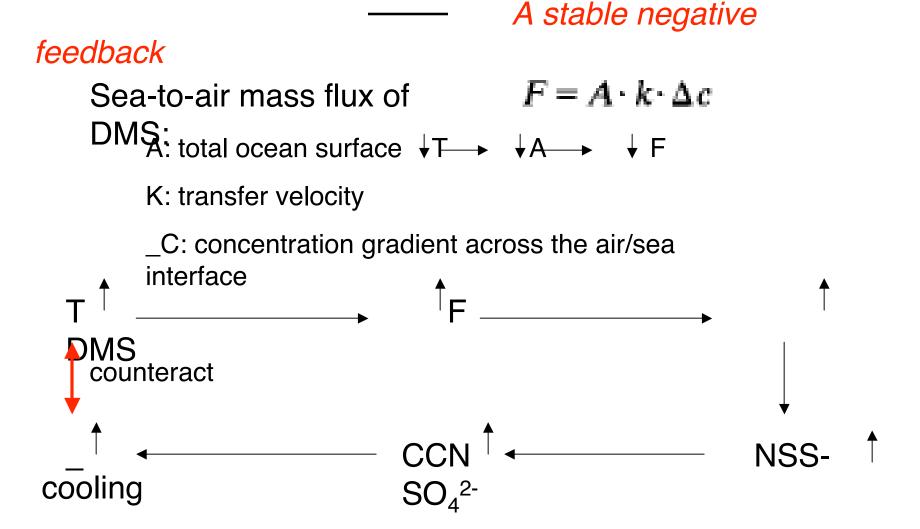
DEPENDENCE OF CLOUD ALBEDO ON CLOUD DEPTH

Influence of Cloud Drop Radius and Concentration

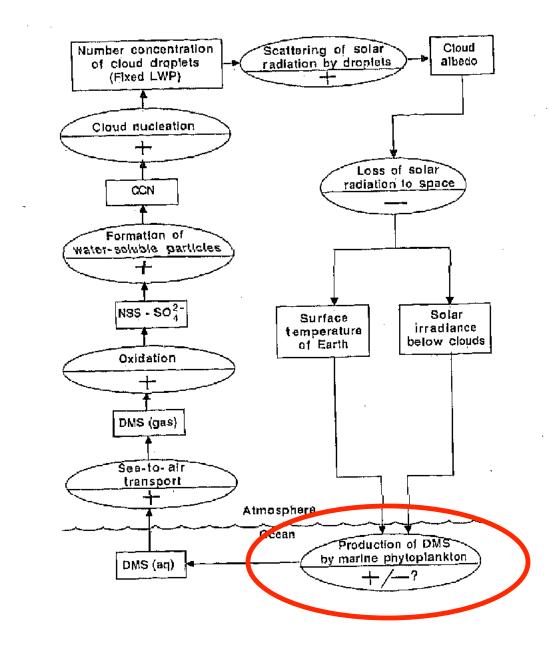


Figure

Table 1


Table 1 Climatic effect caused by increasing CCN concentration over the ocean								
a Global annual average cloud cover (ocean areas only)			b Example: effect on surface climate due to increasing CCN concentra-					
Ocean as Cloud type* covered (Earth covered by oceanic clouds (%)	tion N by 30% while holding	g liquid water path fixe For area covered by oceanic stratiform	Averaged over Earth's			
Non-overlapped St/Sc†	25.2	17.6		water clouds	surface area			
Non-overlapped As/Ac‡	10.8	7.5	Imposed change in N	+30%				
As/Ac overlapped with St/Sc§	8.8	6.1	Change in r _{eff} Change in 0.5-0.7-µm albedo	-10% +0.02				
Nimbostratus, cumulus,	not applicable		at TOC #					
cumulonimbus	(optically thick; high albedo)		Change in 0.5-0.7-µm albedo at TOA**	+0.018				
Cirrus	not applicable (ice)		Change in solar albedo at TOA**	+0.016	+0.005			
Total cover of oceanic stratiform water clouds	44.8¶	31.2	Equivalent change in solar constant ^{††}		-0.7%			
(As/Ac+St/Sc) not over- lapped with cumuliform clouds			Change in global-average surface temperature‡‡		1.3 K			

SENSITIVITY OF ALBEDO AND FORCING TO CLOUD DROP CONCENTRATION



Schwartz and Slingo (1996)

Global climate and DMS emission

Climatic Feedback Loop

Atmospheric DMS concentrations

- Independent of the rate of primary production, the warmest, most saline, and most intensely illuminated regions of the oceans have the highest rate of DMS emission to the atmosphere
- Key fact when considering possible climatic feedback mechanisms

Gaia theory*

- Early after life began it acquired control of the planetary environment
- This homeostasis by and for the biosphere has persisted until the present
- Why would phytoplankton evolve to produce DMS?
 - Many theories for the mechanism, little supporting data
 - Reaction to salt stress

*Lovelock, J.-Enand L. Margulis (1974) "Atmospheric homeostasis by and for the biosphere. Gaia hypothesis." Tellus **26**(1-2): 2-10.

Future work

- Intense study in many areas in attempts to support or disprove the theory
 - Biological role of DMSP & possible explanations for its evolutionary development Simo, R. (2001). "Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links." <u>Trends in Ecology & Evolution</u> 16(6): 287-294.
 - Understanding ocean-atmosphere DMS fluxes Kettle, A. J. and M. O. Andreae (2000). "Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models." <u>Journal of Geophysical Research,</u> [Atmospheres] 105(D22): 26793-26808.
 - Connection between DMS and CCN Pandis, S. N., L. M. Russell, et al. (1994). "The relationship between DMS flux and CCN concentration in remote marine regions." Journal of Geophysical Research, [Atmospheres] **99**(D8):

16945-57. Reasonable agreement between observations and model