Course: SIO209 Aerosol-Cloud Interactions Instructor: Prof. Lynn Russell Author: **Timothy M. Raymond and Spyros N. Pandis** Date: December 2002 Journal: Journal of Geophysical Research (Vol. 207 NO.24)

Title: Cloud activation of singlecomponent organic aerosol particles

Reviewed by: Odelle Lariviere and Ji Chen

Background Literature

- Works that this article cited:
 - 1. Corrigan et al, 1999 "Cloud condensation nucleus activity of organic compounds."
 - 2. Eichel et al, *"The solubility of atmospheric aerosol particles and its impact on cloud microphysics"*
 - 3. Gorbunov et al , 1997 and 1998 "Water nucleation on aerosol particles containing both organic and soluble inorganic substances."
 - 4. Kohler, 1936 and we all know what THAT was about...

- What did we know before this article?

- 1) A large amount of work has been done to develop various theories on CCN activation.
 - 1) Kelvin equation
 - 2) Kohler theory
 - 3) Organic aerosols exist in abundance in the atmosphere.

New Contribution

- Work that this article describes:
 - 1) Expanding the database of pure organic component CCN activation studies
 - 2) Compare the experimental results with an extension of the Kohler theory that includes an easily obtainable parameter for modeling the system.
 - 1) Solubility
 - 2) Wettability (contact angle with water)
- What advance was made in this article?
 - 1) Experimental evidence supporting Kohler theory ... 70 years later.
 - 2) Showed that surfactant properties and morphology can be more of a determinant of good CCN than solubility.
 - 3) Increased our understanding of the relative efficiency of organics to act as CCN.

Implications

- To what other advances did this work lead?
 - 1) Published in 2002, so these advances are still being worked on.

Experimental Design

Statistics of Activation

• D_{50} is the dry diameter at which half of the particles activate at a given super-saturation.

•Cumulative distribution function from these curves and their respective probability distribution function is how the variance/std dev is calculated.

Determining solubility and surface contact angle with water.

Chemical Species	Formula	Purity," %	M_w , g mol ⁻¹	Density," g/cm ³	Solubility,° g/100 cm ³ H ₂ O	Surface Tension, ^d dyn cm ⁻¹	Contact Angle With H ₂ O ^e
Adipic acid	C ₄ H ₁₀ O ₄	99+	146.15	1.360	1.76 1.89	66	$\sim 0^{\circ}$
Ammonium sulfate	(NH.) SO.	99.5	132.14	1.769	76.4°	73 (3.0)	$\sim 0^{\circ}$
Cholesterol	C ₂₂ H _{as} O	99+	386.66	1.067	<0.002	72	$\sim 0^{\circ}$
Glutamic acid	C.H.NO.	99+	147.13	1.538	0.66 0.73	71	$\sim 0^{\circ}$
Glutaric acid	C ₅ H ₈ O ₄	99	132.12	1.424	107 140	51 (2.0)	$\sim 0^{\circ}$
Hexadecane	C1cH3A	99	226.45	0.773	9×10^{-8t}	••••	>90*
Hexadecanol	C10H34O	99	242.45	0.830	3×10^{-6b}		~45°
Leucine	C ₄ H ₁₃ NO ₂	99+	131.17	1.239	0.88 0.97	70	>90°
Myristic acid	C14H28O2	99.5	228.38	0.866	<0.002	57	>90*
Norpinic acid	CaH12O4	unknown	172.18	0.84	4.7	57 (2.0)	
Palmitic acid	C14H32O2	99	256.43	0.853	0.0007 ^e	()	>90*
Pinic acid	C ₁ H ₁₄ O ₄	unknown	186.21	0.85	>8.46	45 (4.2)	
Pinonic acid	C10H16O3	98	184.24	0.786	0.64 0.71	53	$\sim 0^{\circ}$
Sodium chloride	NaCl	99.5	58.44	2.165	36"	74 (2.0)	$\sim 0^{\circ}$
Stearic acid	$C_{18}H_{36}O_2$	99+	284.48	Û.847	0.0003 [¢]	. ,	>9û*

Table 1. Properties of Investigated Compounds at 293 K

⁴Sigma-Aldrich Chemical Company.

CRC Handbook.

"This study.

⁴Experimentally determined at saturation concentration except where noted by concentration value in parentheses in g/100 cm³ H₂O.

Saxena and Hildemann [1996].

^tYaws [1999].

Estimated

Results

Table 2. Activation Diameters	for Investigated Compou	ndsª
-------------------------------	-------------------------	------

				Predicted			
	Measured	1 D50, nm	D_{K_2}	D_{K_0} nm		D*, nm	
	s = 0.3%	s = 1%	s = 0.3%	s = 1%	s = 0.3%	s = 1%	
Sodium chloride	48 ± 10	19 ± 3	51	23	51	23	
Ammonium sulfate	66 ± 13	26 ± 4	61	27	61	27	
Glutaric acid	89 ± 18	44 ± 7	66	30	66	30	
Pinic acid	92 ± 18	38 ± 6	80	36	120	74	
Adipic acid	175 ± 35	107 ± 18	90	41	368	159	
Glutamic acid	75 ± 15	38 ± 6	93	42	541	194	
Pinonic acid	114 ± 23	50 ± 9	94	42	426	148	
Leucine	>200	200 ± 34	95	43	479	184	
Norpinic acid	88 ± 18	42 ± 7	98	44	215	114	
Myristic acid	>200	>200	105	47	>700	>200	
Hexadecanol	>200	>200	137	62	>700	>200	
Hexadecane	>200	>200	138	62	>700	>200	
Palmitic acid	>200	>200	139	62	>700	>200	
Stearic acid	>200	>200	144	65	>700	>200	
Cholesterol	101 ± 20	48 ± 8	148	66	712	214	

 ${}^{s}D_{50}$, experimental activation diameter; D_{KO} theoretical activation diameter according to Köhler theory at T = 293 K, not accounting for limited solubility; D^{*} , theoretical activation diameter according to equation (5); s, supersaturation. Error bars determined by standard deviations of multiple runs.

•NaCl and $(NH_4)_2(SO_4)$ are found to agree well with Kohler theory.

•Agreement begins to decrease as morphology and surfactant properties dominate solubility in activation efficiency.

• An insoluble particle that is "wettable" behaves as a pure water drop (Kelvin equation)? ie always unstable and will grow if R_c is achieved for a given supersaturation. (Eqn. 5)

- Theory overpredicts activation D.
- For species where solubility is the key factor, experiment agrees with Kohler and extended Kohler theory.
- For those assumed "wettable" agreement generally improves when allowed to follow the Kelvin

Components of Kohler's equation.... (Simplified sort of)

•Kelvin's equation: $S = exp^{(2M_{w-s}/RT_{-s}D)}$ (surface tension)

•Raoult's equation: $P = x_{solvent} P_{pure}$ (solute effect on a flat surface)

$$\begin{aligned} \mathbf{\cdot} \mathbf{x} &= n_w / (n_w + n_s) \\ \mathbf{\cdot} \mathbf{A} \mathbf{x} &= n_w / (n_w + v n_s) ('v' \text{ is the van't Hoff factor) too simple.} \\ \mathbf{\cdot} \mathbf{A} \mathbf{x} &= \exp^{(-v M M_{-})} \text{ or} \\ \mathbf{\cdot} &= \exp[(-(v_m m_s M_w / M_s) / ((4\pi a^3 s'/3) - m_s)] \\ \mathbf{\cdot} \mathbf{K} \text{ ohler: } \mathbf{S} &= \exp[(2M_w s / RT_w D) - (v_m s M_w / M_s) / ((4\pi D^3 s'/3) - m_s)] \end{aligned}$$

(These equations are from Pruppacher and Klett - equation 5 is

Assumptions, simplifications, and other stuff...

- CCN used to measure number of drops activated was not able to resolve a size distribution for the activated drops.
- There appears to still be some flexibility on the best way to handle the solubility/activity of the solute in the theory
- The proposed modified Kohler equation (#5) appears to overpredict the activation diameter to the same degree that the original underpredicts the activation.
- Use of equation 6 is only supported by results for leucine.

Conclusions

- Insoluble species with contact angle of zero with water may be good CCN.
- Modified Kohler equation should only be used for these cases, however there is still a lot of variance between the species.