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Introduction 7	  

Small solid or liquid particles suspended in air known as aerosols have adverse impacts 8	  
on global climate through direct interactions with incoming solar radiation, as well as their 9	  
ability to form clouds via water uptake processes.  It is established that cloud condensation 10	  
nucleus (CCN) activity is a complex function of aerosol size, shape, and chemical composition1, 11	  
and is an important metric for investigating aerosol impacts on climate and the environment2.  12	  
While empirical CCN measurements on ambient aerosol have been recently conducted3-7, the 13	  
extent to which size and/or composition drives the CCN activity of a given aerosol is still 14	  
unclear.  The current study utilizes classical Kӧhler Theory to interrogate effects of mass, 15	  
solubility, and composition on the CCN activity of atmospheric aerosols. 16	  

Kӧhler Theory is a comprehensive approach to modeling CCN activity by incorporating 17	  
various physicochemical properties of aerosols, such as surface tension, density, and ionic 18	  
contributions of soluble components8. 19	  
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Here, coefficients must be defined to incorporate size-dependent changes in surface 21	  
curvature and tension, as well as compositionally-dependent contributions of soluble ionic 22	  
components.  The size dependence of surface curvature can be modeled via the Kelvin Effect, 23	  
with a coefficient defined as follows: 24	  
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     Equation 2 25	  

where σlv is the surface tension of water at a liquid-air interface, ρl is the density of liquid water, 26	  
Rv is the gas constant for moist air, and T is temperature.  Dissolved ionic species will decrease 27	  
the equilibrium vapor pressure for water via the Raoult effect, with a coefficient defined as 28	  
follows: 29	  
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     Equation 3 30	  

where i is the van’t Hoff factor, Mv is the molar mass of water, ns is the moles of solute and ρl is 31	  
the density of liquid water. 32	  

While this theory is well-suited for soluble species of a given size, atmospheric aerosol 33	  
commonly exist as compounds with both soluble and insoluble components.  Because these 34	  
mixed-component aerosols can still act as cloud condensation nuclei, extending Kӧhler Theory 35	  
to model them is of interest. 36	  

 37	  
 38	  
 39	  



Model Description 40	  
 To modify the Kӧhler equation in order to account for insoluble materials, we considered 41	  
the case of a wet particle with a soluble component and an insoluble component. The following 42	  
assumptions were made: (1) the soluble compound is perfectly soluble, disassociates completely 43	  
and does not contribute the total volume of the particle significantly; (2) the insoluble compound 44	  
is perfectly insoluble; (3) no internal mixing of the soluble and insoluble components; (4) the wet 45	  
particle is a sphere; (5) the surface tension does not change with added solute and hence the 46	  
Kelvin effect does not need to be modified; (6) the temperature is constant at 273 K (0°C); and 47	  
(7) thermodynamic processes are ignored. 48	  

Our model used a modified Kӧhler equation (see supplemental information for the 49	  
derivation) to calculate the water saturation over a range of wet radii: 50	  

!! !,  !!"#$
!!

= 1− !
!!!!!

! exp  (𝑎/𝑟)   Equation 10 51	  

The local maximum of the saturation curve determined the values of the critical 52	  
supersaturation and critical radius. In order to validate the accuracy of our model, we used the 53	  
assumptions described previously to replicate Table 5.18 and maintained these assumptions 54	  
throughout.  55	  

Three sensitivity tests were conducted which represent atmospherically relevant scenarios 56	  
mixed-component aerosols may undergo during their lifetimes. The first test examined the 57	  
explicit role of particle mass on the critical radius for CCN activation by maintaining a constant 58	  
soluble mass fraction, χs, and varying the total mass, mtot, which equals the sum of masses of the 59	  
soluble and insoluble components. Throughout the model the insoluble component was hexane, 60	  
for consistency. This modification changed the value of the variables b and ri to include the 61	  
respective solute mass and volume of insoluble component. This sensitivity test mimicked the 62	  
aggregation of small aerosols of same composition to form larger aerosols. Although it is 63	  
unlikely for aerosols of totally identical composition to aggregate without the addition of a 64	  
dissimilar component, this result shows the general dependence of particle size to saturation 65	  
ratio.  66	  

The second sensitivity test investigated the effect of soluble mass fraction on critical 67	  
supersaturation. Total mass was held constant, mimicking the aging of an aerosol as the fraction 68	  
of insoluble component increases over time without contributing to the total particle mass. Fixing 69	  
total mass equal to 10-19 kg, the mass fractions 0.1, 0.5, and 1.0 were investigated which changed 70	  
the value of both b and ri in our modified Kӧhler equation. From these results we determined the 71	  
approximate dependence of water uptake on mixed-component particles.  72	  

The final test investigated the chemical compositional changes a particle has on the 73	  
activation behavior. A totally soluble (χs = 1) and mixed-component (χs = 0.5) particle were 74	  
compared, each with two different van’t Hoff factors which isolates the dependence of ionic 75	  
behavior on CCN activation based on Kӧhler Theory approximations. The van’t Hoff factor 76	  
accounts for the number of dissociated ions contributing to water uptake which is 77	  
compositionally dependent, therefore the molecular weight value also changed for the particular 78	  



soluble compound. Therefore, this test essentially modeled the saturation dependence on the ratio 79	  
of i/Ms for solutes which have been found in atmospheric aerosols.  80	  
 These modifications to Kohler Theory allow for a more complex modeling system. 81	  
However, it does not consider components that have limited or partial solubility in water. It also 82	  
neglects the effect of dissolved solute on the surface tension of the droplet. These omissions 83	  
could serve to over or underestimate a particle’s critical radius and critical supersaturation, 84	  
depending upon its composition. 85	  
 86	  
Results and Discussion 87	  

The results of the first sensitivity test (Figure 1) show that increasing total particle 88	  
diameter while keeping the mass fraction and identity of solute constant leads to a decrease in 89	  
critical supersaturation. Essentially, larger particles are easier to activate. 90	  

The results of the second sensitivity test (Figure 2) show that for a constant mass a 91	  
greater fraction of solute in the particle decreases the value of critical supersaturation. Based on 92	  
this result, particles with a greater mass fraction of insoluble component are harder to activate. 93	  

The results of the third sensitivity test (Figure 3) were somewhat inconclusive regarding 94	  
the effect of changing solute identity on critical supersaturation. It was recognized that the trend 95	  
is dependent on the ratio of i/Ms and not solely on i, thus the critical radius with a higher van’t 96	  
Hoff factor will be larger than a particle with a smaller van’t Hoff factor if the molecular weight 97	  
remained constant. The magnitude of this effect was less significant than those of the other 98	  
sensitivity tests.  99	  
 The three factors probed in the sensitivity tests can be ranked in accordance to their 100	  
impact on critical supersaturation and critical radius. The total particle mass has the largest 101	  
impact, the mass fraction of solute has the second largest impact, and the identity of the solute 102	  
has the smallest impact. As is consistent with discussions of classical Kӧhler Theory, the size of 103	  
the aerosol particle plays the largest role in determining critical supersaturation and critical 104	  
radius of CCN, although the results show that the presence of insoluble component is significant. 105	  
Furthermore, studies examining the impact of organic components on CCN activation verify the 106	  
qualitative trend presented by the second sensitivity test, but quantitative values could not be 107	  
confirmed10. 108	  
 109	  
Conclusions 110	  
 This result is relevant to climate science because almost all aerosols found in nature 111	  
contain insoluble components. Therefore, models that incorporate the presence of insoluble 112	  
components in CCN are critical. Furthermore, calculations based on classical Kӧhler Theory, 113	  
which does not take insoluble components into account, underestimate the critical 114	  
supersaturation and overestimate the critical radius of mixed component aerosols. While the 115	  
modified Kӧhler equation presented in this model relies on several assumptions and 116	  
simplifications, the model provides a good starting point for development of further models that 117	  
take insoluble components of CCN into account.  118	  



 119	  
 120	  
Figure 1: Saturation ratio as a function of particle diameter for varied total particle mass at a constant mass fraction 121	  
of soluble component (left).  Critical supersaturation and radius for each scenario are taken as the peak maxima 122	  
(right). 123	  
 124	  

 125	  
Figure 2: Saturation ratio as a function of particle diameter for varied mass fraction of soluble component at a 126	  
constant total particle mass (left).  Critical supersaturation and radius for each scenario are taken as the peak maxima 127	  
(right). 128	  
 129	  

 130	  
Figure 3: Saturation ratio as a function of particle diameter for varied van’t Hoff factor (solid vs. dashed) and mass 131	  
fraction of soluble component (left).  Critical supersaturation and radius for each scenario (i=2, solid; i=4, dashed) 132	  
are taken as the peak maxima (right). 133	  
 134	  
 135	  
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Supplemental Information 143	  
 144	  
Raoult’s Law for an electrolytic solution states that: 145	  
 146	  
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 148	  
Since n = m/M and m = 𝜌V we can state that 149	  
 150	  
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 154	  
For the purpose of our model in which an insoluble core is surrounded by an aqueous solution 155	  
with a solute that contributes minimally to the total volume, we can describe the volume of water 156	  
as: 157	  
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 159	  
Using the definition of volume for a sphere, we can write that  160	  
 161	  
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 163	  
where ri is the radius of the insoluble core. Substituting (5), (6) and (8) into (4) yields 164	  
 165	  
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 167	  
(9) can be combined with the Kelvin effect to yield the modified Kӧhler equation: 168	  
 169	  
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