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1 Introduction1

Cloud droplet growth is an integral part of atmospheric physics, and understanding it is vital for modeling2

cloud formation, parcel motion, and precipitation. In the atmosphere, the initial formation of cloud droplets3

occurs due to water vapor condensing onto cloud condensation nuclei (CCN), which are particles such as4

aerosols that are present in the atmosphere. Due to the Kelvin Effect, this condensation only occurs when5

the air contains slightly more water vapor than it normally holds for a given temperature, i.e. the air is6

supersaturated. Thus, it is important to understand what conditions of atmospheric supersaturation and7

CCN promote cloud droplet nucleation and growth. Kohler curves describe absolute supersaturation levels8

at which cloud droplets become nucleated and grow stably. However, these curves do not describe the9

evolution of the supersaturation that occurs during uplifting of air parcels during cloud formation. How10

supersaturation and droplet growth are affected by adiabatic cooling due to uplift are described by a set of11

equations which are not easily solved analytically. In this paper we present results by numerically solving12

these equations. In Section 2, we present the governing equations. We next describe the numeric method13

used to solve these equations in Section 3. Lastly, in Section 4 we state our results and draw some general14

conclusions.15

2 Background16

Initial cloud droplet growth occurs by diffusing water vapor onto the drop under conditions in which water17

vapor pressure from the environment is greater than the saturation vapor pressure of the drop. During this18

phase change from vapor to liquid, latent heat is released and warms the drop. This leads to an increase in19

the saturation vapor pressure of the drop, which in turn reduces the vapor pressure gradient necessary for20

diffusion. This reduces the drop growth rate and forces heat to diffuse from the drop to the environment. By21

assuming that the only process in which the drop can increase it’s mass is through diffusion, Mason (1971)22

found the growth rate of the drop to be23

r
dr

dt
=

S − 1

K +D
(1)

where r is the radius of the drop and S is the saturation mixing ratio es(r)
es

, which is the ratio of saturated24

vapor pressure over a drop to that over a flat surface. K and D describe the conduction of heat and the25

diffusion of the water vapor, respectively, and are given by26

K =
L2
lvρl

κRvT 2

D =
ρlRvT

es(T )Dv

where κ is molecular thermal conductivity, Dv is the water vapor diffusivity, ρl is the density of liquid water,27

Llv is the latent heat of vaporization, Rv is the gas constant for vapor, T is the temperature and es is the28

saturation vapor pressure.29
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Supersaturation is defined as the S−1, where S ≡ es(r)
es

. The evolution of the supersaturation is governed by30

two components: a source term and a sink term. First, as the temperature decreases due to adiabatic lifting,31

the saturation vapor pressure (es) decreases and therefore acts as a source for supersaturation. Conversely,32

as water vapor diffuses into the drop, less vapor is available in the environment and acts as a sink for33

supersaturation. This evolution is described by34

dS

dt
= a1uz − a2

dwl

dt
, (2)

where uz is the vertical velocity of the particle and wl is the liquid water mixing ratio. The liquid water35

mixing ratio is a function of the droplet radius and is expressed by36

wl =
4π

3

nρlr
3

md
(3)

where n is the number of droplets in the parcel, andmd is the mass of dry air in the parcel under consideration.37

By applying Dalton’s law of partial pressures and the Clausius-Clapeyron equation, the constants a1 and a238

can be found to be39

a1 =
1

T

(
Llvg

RvcpT
− g

Rd

)
a2 = ρa

(
RvT

εes(T )
+
εL2

lv

pTcp
.

)
,

where g is gravitational acceleration, cp is the specific heat at constant pressure, Rd is the gas constant for40

dry air, p is pressure, and ε is the ratio of the mean molecular weight of water vapor to dry air.41

3 Methods42

Solving equations 1 and 2 is complicated because not only does dr
dt depend on supersaturation, but dS

dt
depends on the droplet radius due to the wl term. Thus, these equations cannot be solved analytically.
Using a sufficiently small time step (0.025 s), we can calculate r and S incrementally:

r(i+ 1) = r(i) +
dr(i)

dt
∆t (4)

S(i+ 1) = S(i) +
dS(i)

dt
∆t (5)

where dr
dt and dS

dt are from equations 1 and 2, respectively.43

To examine the evolution of cloud droplets for a distinct population of CCN, we consider a saturated air44

parcel at an initial pressure of 800 mb that is adiabatically lifted at a constant velocity of 0.1 m/s. These45

values of initial pressure and velocity are chosen based on Mordy (1959), who first investigated this effect.46

We base the initial size distribution of CCN, i.e. the initial droplet radii distribution, on that used by Mordy47

(1959).48

The number of CCN per unit volume of air varies based on region and individual CCN size. For continental
conditions, CCN particles tend to be larger and more abundant, while for maritime conditions, CCN particles
are usually smaller and fewer in number density. An overall number distribution for CCN is approximated
by

NCCN = c1(S − 1)k

where c1 and k depend on the particular parcel (Curry, 1999). For general continental conditions, 1 m3 of49

air would have on the order of 108 CCN particles (Curry, 1999). We vase our total number density off of this50

value, and as this does not give a distribution based on individual CCN size, we use a uniform distribution51

over our model’s population of CCNs for simplicity.52
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Under the assumptions of hydrostatic balance and adiabatic cooling, temperature and pressure can be
expressed as functions of altitude, and by association with vertical velocity, time:

T (t) = T0 − Γuzt (6)

P (t) = P0

(
1 − Γuzt

T0

)g/RdΓ

(7)

where Γ is the atmospheric lapse rate. The dry adiabatic lapse rate is an unreasonable approximation for53

a saturated parcel. The moist adiabatic lapse rate is a more appropriate choice, however, its value varies54

depending on the amount of water vapor present in the parcel. For simplicity, we chose a constant value of55

4K/km for our lapse rate, which is within the range of the moist adiabatic lapse rate. The other constants56

and initial conditions used in our model are shown in Table 1.57

4 Results and Discussion58

Figure 1 shows the results of the interdependency between droplet radius and supersaturation. The results59

of our model indicate that the rate of increase of droplet radius is inversely related to droplet radius, that60

is, small droplets increase in radius faster than larger droplets. As a result, the rate of change of droplet61

size decreases as droplets grow, and the individual lines representing various initial droplet radii begin to62

converge as altitude increases. This is consistent with expectations based upon simple droplet geometry. For63

a large droplet with greater surface area, more mass is required to increase the droplet radius compared to64

a smaller droplet.65

Beginning from the cloud base, supersaturation increases as expected due to cooling during adiabatic lifting.66

After reaching a maximum, supersaturation begins to decrease as more water condenses and dwl

dt becomes the67

dominant term in equation 2. The values for supersaturation are in agreement with observed atmospheric68

conditions.69

Our model assumes a constant adiabatic lapse rate. In reality, the moist adiabatic lapse rate is dependent on70

temperature, and therefore altitude. For our purposes however, this assumption should not have significant71

impact. Our model also assumes a uniform distribution of several discrete sizes of CCN when in reality, the72

distribution would be a continuous spectrum with a varied distribution among initial radii. According to73

our results, all initial droplet radii were activated. Activation occurs at a unique altitude for each initial74

droplet radius. This altitude of activation can be seen in Figure 1, and corresponds to the point at which75

each line begins to deviate from the vertical. This is in disagreement with the results of Mordy (1959) in76

which the smallest CCN radii did not activate. The discrepancy in results may be due to the aforementioned77

simplification of CCN distribution.78

Our model demonstrates the interdependent relationship between droplet radius and supersaturation during79

adiabatic lifting of an initially saturated air parcel. The assumption of hydrostatic balance and assumed80

vertical velocity allows both droplet radius and supersaturation to be expressed as functions of time, thus81

the relationships can be solved using incremental time steps. The results of the model confirm expected82

relationships between radius increase and supersaturation dependence with altitude.83
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Constant or Initial Condition Symbol Value Units
Enthalpy of Vaporization for Water Llv 2.5e6 J/kg

Density of Liquid Water ρl 1000 kg/m3

Water Vapor Gas Constant Rv 461 J/(Kkg)
Thermal Conductivity for 273K κ 2.40e−2 J/(msK)

Water Vapor Diffusivity at 1000mb at 273K Dv 2.21e−5 m2/s
Adiabatic Lapse Rate Γ .004 K/m

Gravitational Constant g 9.81 m/s2

Dry Gas Constant Rd 287 J/(kgK)
Heat Capacity at Constant Pressure for Dry Air cp 1004 J/(kgK)

Ratio of Molar Masses of Water Vapor to Dry Air ε 0.622
Density of Air ρa 1.29 kg/m3

Reference Saturation Vapor Pressure at 273K es0 610.70 Pa
Reference Temperature for CC Equation T0 273 K

Initial Temperature Ti 283 K
Mass of Dry Air md 0.6 kg

Initial Supersaturation S0 1.00 %
Vertical Velocity uz 0.1 m/s

Initial Ambient Pressure P0 8e5 Pa

84

Table 1. List of constants and initial conditions used in the model.85

86

Figure 1. Evolution of a population of droplets with altitude (left).87

Evolution of supersaturation of an air parcel with altitude (right).88
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