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1 Introduction

Atmospheric thermodynamics focuses on water and its transformations. Advanced topics are usually focused
on phase transitions of water, homogeneous and heterogeneous nucleation, and the role of supersaturation
on the formation of ice crystals and cloud droplets. Among those sub-topics, cloud nucleation has been a
large area of research throughout the twentieth century.

Nucleation process is an energy balance between surface tension and latent heat. When the latent heat
associated with condensation is enough to counteract the surface tension on the drop, the droplet is nucleated.
However, the surface tension of a small water droplet can be very large. In order to break the high energy
barrier on the surface for homegeneous nucleation, high values of supersaturation (>> 100%) are required.

In the Earth’s atmosphere supersaturation typically only slightly exceeds 100%, e.g., 100.05%. Therefore
cloud droplets are formed via hetereogeneous nucleation, which involes cloud condensation nuclei (CCN),
a subset of aerosol particles. The presence of CCN, such as sodium chloride (NaCl), lower the equilibrium
vapor pressure of the water relative to pure water, thereby reducing the effects of surface tension and enabling
the formation of cloud droplets.

In this study we evaluate the effects of CCN on droplet growth within warm clouds, which form due to
vapor-to-liquid condensation. Water droplets are assumed to be isolated and spherical, and form due to the
diffusion of water vapor to the surface in a steady state diffusion field.

2 Cloud Droplet Growth

2.1 Model Description

In order to model the cloud droplet growth as a function of time, we have used Equation (3) from Curry
and Webster [1999]. The approximation assumes that a droplet has the shape of a sphere that develops
around a saturated nucleus core. Furthermore, the environment conditions (temperature, pressure, and
supersaturation) are assumed to be constant, and the solute and curvature effects are neglected, which will
be explained in more detail. The initial approximation is obtained by applying diffusion equations to the
droplet, as shown in Equation (1).

dm

dt
= 4πrDv (ρv(∞)− ρv(r)) (1)

Adding the latent heat by condensation, shown in Equation (2), gives the basis of the droplet growth
rate model.

dQ

dt
= −Llv

dm

dt
= −4πrκ (T (∞)− T (r)) (2)

These equations are combined to approximate the growth rate of a droplet by diffusion as

r
dr

dt
= (S − 1)

[
L2
lvρl

κRvT 2
+

ρlRvT

es(T )Dv

]−1
=

S − 1

K +D
(3)

where K and D are the thermodynamic terms associated with heat conduction and diffusion of water vapor,
respectively. This differential equation is the same as Equation 5.26 in Mason [1971]. S is the saturation
ratio, ρl the liquid density, es the saturation pressure in the droplet and T is the environment temperature.

Assuming the atmospheric ambient conditions are constant (i.e. T , S, K, and D are constant), then
Equation (3) can be integrated to get

r(t) =

[
r20 +

2(S − 1)

K +D
(t− t0)

]1/2
, (4)

which can then be rearranged to find t

t = (r2 − r20)
K +D

2(S − 1)
(5)
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Using the values from Table 1, the main results in Table 2 can be approximated. But to include the
effects of initial mass, curvature and the solute, we must modify our model.

One of the main properties of Equation (5) is that it does not depend on the nucleus mass, which directly
contradicts with Table 2. This led us to the first modification on the approximation Equation (5). Rather
than starting from r = r0 = 0.75 10−6µm and t0 = 0 as given in the conditions of Table 2, we have altered
the definition of the starting radius as the radius of the nucleus without any water. We haven’t changed the
value of r0, as this was given as one of the constants. But, we have defined t0 as the time the radius of the
droplet develops to r0, which is definitely not 0.

To calculate the initial radius, we have assumed that the nucleus is a perfect sphere. Thus, the initial
radius can calculated as

ρNaCl
4

3
πr3i = mNaCl. (6)

We have used ρNaCl=2160 kg m−3. This adjustment introduced an effect of the nucleus mass and
decreased the overall error of the first given approximation.

The secondary improvement was on es. The approximation assumed es to be a constant, but normally it
is not. Especially for small r values, Best [1951] states that es deviates from its average value significantly.
Since our starting point involves small values of r, we have applied two modifications on es. The first
adjustment is the usage of Raoult’s law to incorporate the effect of surface tension, introducing an additional
factor depending on both r and the mass of the nucleus. This factor is shown in Equation (7). i is a constant
depending on the molecular structure of the nucleus core and i = 2 for NaCl. es∞ is the saturation pressure
of the environment (at a virtual radius of r =∞).

es
es∞

=
nH2O

insolt + nH2O
=

4

3
πr3ρH2O

MH2O

imsolt

Msolt
+

4

3
πr3ρH2O

MH2O

 (7)

The second modification is the introduction of the effect of curvature:

es
es∞

= exp

(
2σlv

ρlRvTr

)
. (8)

The combined effect of surface tension and the curvature is then

es(r, T ) = es∞

 4

3
πr3ρH2O

MH2O


imsolt

Msolt
+

4

3
πr3ρH2O

MH2O


−1

exp

(
2σlv

ρlRvTr

)
(9)

Throughout our calculations and simulations, we assume T to be constant as its deviations from its initial
value is negligible. This modification in es directly affects our D value in Equation (3).

A final modification has been applied on the numerator (S − 1) of Equation (3) as recommended by
Mason [1971]. By adding the curvature effects we find

(S − 1)→ (S − 1) +
2σlv

ρlRvTr
− insolt
insolt + nH2O

(10)

where n represents the mole number of the material in the subscript.
Although this equation increases the accuracy of the results, it depends itself on r. This means that the

simple quadratic solution in Equation (5) can not be used any more and we need a numerical integration
method to solve the differential equation in Equation (3). Using the explicit Euler method we are able to
calculate r iteratively as

rk+1 =

S − 1 +
2σlv

ρlRvTr
− nsolt
insolt + nH2O

K(T ) +D(rk, T )

 ∆t

rk
(11)
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The initial condition at k = 0 is r = r0 which was calculated as the radius of the nucleus core itself.
Although this approximation is close to the values in Table 2, it has its drawbacks with respect to reality.

The first limitation is that we have assumed the temperature to be constant throughout the droplet and
same as the environment at all times. The second drawback is that we have assumed that the environment
properties like κ,Dv, Llv stay constant, which introduces an extra error into our approximation.

2.2 Model Parameters

K is the thermodynamic term related to the latent heat release due to condensation and diffusion of heat
away from the droplet. D is the vapor diffusion term related to the diffusion of water vapor onto the growing
droplet. Plus, S is saturation ratio. If S < 1, then dr/dt < 0, which describes the evaporation of a cloud
drop. And if S > 1, then dr/dt > 0 and the droplet grows by condensation.

Water vapor is transferred to the drop by molecular diffusion as long as the vapor pressure surrounding the
drop exceeds the saturation vapor pressure of the drop. As water condenses on the drop, latent heat release,
the drop becomes warmer than the environment, and heat is diffused away from the drop. Condensation
can thus be considered as a double diffusive process, with water vapor diffused towards the drop and heat
diffused away from the drop. Therefore cloud droplet growth is a balance between diffusion of water vapor
and convection.

3 Results of Modeling Study

Figure 1 shows a visual comparison between the droplet growth rate modeled by Equation (4) with r0 =
0.75µm, T = 273K, p = 900mb, and (S − 1) = 0.05%. A major assumption of Equation (4) is that the
curvature and solute effects are neglible once the droplet grows beyond a few microns. The figure shows
general agreement between the model and values from Table 5.5 of Curry and Webster [1999]. But by
considering curvature and solute effects, Equation (11) is able to recreate the values from Table 5.5 of Curry
and Webster [1999] (see Figure 2).

To study the sensitivity of the model, we varied T and (S − 1), separately, while holding all other
parameters constant. Figure 3 and 4 show the results. The increased values of T correspond physically to
increasing the heat diffused away from the droplet (decreased K) and decreasing the amount of water vapor
diffused into the droplet (increased D). Similarily, increased values of S− 1 increase the droplet growth rate
due to an increased amount of water vapor, which lowers the amount of energy needed to achieve activation.

4 Conclusion

We have evaluated two droplet growth models for clouds that form due to vapor-to-liquid condensation. The
first model, taken from Curry and Webster [1999], is a simplified model that ignores curvature and solute
effects, but captures the general behavior of the droplet growth. The second model includes curvature and
solute effects, and is able to recreate the values from Table 5.5 of Curry and Webster [1999]. A sensitivity
analysis shows a positive correlation between droplet growth, and both temperature and supersaturation.

Both models describe droplet growth by diffusion only and therefore do not take into account the effect
of collisions and coalescence between droplets, which become important once r > 20µm. Additionally, the
models do not consider changes in S over time as less water vapor is available. A more robust version of the
models should incorporate the effects of both coalesence and changing S.
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Table 1: Parameters for droplet growth rate.

Parameter Value Units Notes

S − 1 0.05 %
p 900 mb
T 273 K
r0 0.75 µm
Llv 2.5x106 J kg−1 pure water at T = 273K
ρl 1000 kg m−3 pure water at T = 273K
Rv 461 J kg−1K−1

κ 2.4x10−2 J m−1s−1K−1 T = 273K
Dv 2.21x10−5 m2s−1 T = 273K, p = 1000mb

2.46x10−5 m2s−1 T = 273K, p = 900mb
es(T ) 6.15 mb T = 273K

Table 2: Growth rate of droplets with nuclei of NaCl, (S − 1)=0.05%, p=900mb, T=273K, and r0=0.75µm
recreated from Table 5.5 of Curry and Webster [1999].

m [g] 10−14 10−13 10−12

r [µm] t [s]

1 2.4 0.15 0.013

2 130 7.0 0.61

4 1,000 320 62

10 2,700 1,800 870

20 8,500 7,400 5,900

30 17,500 16,000 14,500

50 44,500 43,500 41,500
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Figure 1: Droplet growth rate of the simplified model (Equation (4)) against the values from Table 5.5 of
Curry and Webster [1999].
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Figure 2: Droplet growth rate with a nuclei of NaCl, and curvature and solute effects are included. The values
are calculated numerically using Equation (11) with ∆t = 0.1, T = 273K, p = 900mb, and S − 1 = 0.05%.
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Figure 3: Droplet growth rate at p = 900mb and S − 1 = 0.05% as T is increased.
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Figure 4: Droplet growth rate at p = 900mb and T = 273K as the S − 1 is increased.
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